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Remarks on continuously distributed sequences

Paštéka M.

In the first part of the paper we define the notion of the density as certain type of finitely ad-

ditive probability measure and the distribution function of sequences with respect to the density.

Then we derive some simple criterions providing the continuity of the distribution function of given

sequence. These criterions we apply to the van der Corput’s sequences. The Weyl’s type criterions

of continuity of the distribution function are proven.
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Introduction

The aim of this paper is to study the distribution properties of sequences of real numbers.

The research of distribution of sequences connected with certain type of measure of sets of

their indexes was started by Herman Weyl in his famous paper [13] in 1916. Let N be the set of

positive integers. For S ⊂ N the value

lim sup
N→∞

|S ∩ [1, N]|

N
= d(S) (1)

is called the upper asymptotic density. We denote

D = {S ⊂ N : d(S) + d(N \ S) = 1}.

It is easy to check that D is the system of all sets S ⊂ N such that the term on left hand side in

(1) has proper limit. In this case its value is called the asymptotic density of S, denoted as d(S).

Let {v(n)} be a sequence. For an arbitrary set A we denote

v−1(A) = {n ∈ N : v(n) ∈ A}.

A sequence of elements of interval [0, 1] is called uniformly distributed if and only if for each

subinterval I ⊂ [0, 1] we have v−1(I) ∈ D and d(v−1(I)) = |I|.

This approach was later generalized by I. Schoenberg in [11]. We say that a sequence {v(n)}

of elements of interval [0, 1] has asymptotic distribution function if and only if for each x ∈ [0, 1]

the set v−1([0, x)) belongs to D and in this case the function

F(x) = d(v−1([0, x)))

is called the asymptotic distribution function of {v(n)}.
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90 Paštéka M.

Our scope is to derive some results for more general concept of density — certain type of

finite additive probability measure defined on q-algebra or algebra of subsets of N. In the

theory of distribution of sequences the question of the continuity of the distribution function

plays very important role. In the following text we shall study the sequences from this point

of view.

1 Density

A system Y of subsets of N will be called q-algebra if and only if

i) ∅, N ∈ Y ,

ii) A ∩ B = ∅ =⇒ A ∪ B ∈ Y for all A, B ∈ Y ,

iii) N \ A ∈ Y for all A ∈ Y .

A finitely additive probability measure ν defined on q-algebra Y will be called density if

and only if

A ∈ Y ⇐⇒ ∀ε > 0 ∃A1, A2 ∈ Y : A1 ⊂ A ⊂ A2 ∧ ν(A2)− ν(A1) < ε ∀A ⊂ N. (2)

Let ν be a density defined on q-algebra Y . We say that a sequence {v(n)} of real numbers

is ν-measurable if and only if for each real number x the set v−1((−∞, x)) belongs to Y . In this

case the function G(x) = ν(v−1((−∞, x))) will be called ν-distribution function of {v(n)}. If G

is continuous, we say that {v(n)} is ν-continuously distributed.

Theorem 1. A bounded sequence {v(n)} of real numbers is ν-continuously distributed if and

only if for some set S, which is dense in the real line, we have v−1((−∞, x)) ∈ Y for each

x ∈ S and the function F(x) = ν(v−1((−∞, x))) is uniformly continuous on S. In this case the

ν-distribution function of {v(n)} is the unique extension of F to whole real line.

Proof. Let t be an arbitrary real number. For given δ > 0 there exist x1, x2 ∈ S such that

x1 < t < x2 and x2 − x1 < δ. Then

v−1((−∞, x1)) ⊂ v−1((−∞, t)) ⊂ v−1((−∞, x2)). (3)

Since F is uniformly continuous on S, the value δ > 0 in such manner can be determined such

that F(x2)− F(x1) < ε. And so, from (2) and (3) we get v−1((−∞, t)) ∈ Y . Analogously we

can prove that the function ν(v−1((−∞, t))) is a continuous extension of F(t).

The definition of asymptotic density via upper density can be generalized to the axiomatic

form as follows. We say that a set function n : P(N) → [0, 1] is normalized if and only if

n(∅) = 0, n(N) = 1.

We say that n is isotonic if and only if

A ⊂ B =⇒ n(A) ≤ n(B).

If n : P(N) → [0, 1] is isotonic and normalized and for every A, B ⊂ N we have

A ∩ B = ∅ =⇒ n(A ∪ B) ≤ n(A) + n(B),

A ∪ B = N =⇒ 1 + n(A ∩ B) ≤ n(A) + n(B),

we say that n is outer density.
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By the standard methods can be proved the following assertion.

Theorem 2. If n is an outer density then the set system

Y = {A ⊂ N : n(A) + n(N \ A) = 1}

forms a q-algebra and ν = n|Y is a density on Y .

In this case we say that ν is given by n.

The axiomatic approach of density is studied in the paper [6], inspired also by the work [4]

(see also [10]).

From Theorem 1 we get immediately the following result.

Theorem 3. Let ν be a density given by n. A sequence {v(n)} of real numbers is ν-conti-

nuously distributed if and only if for a suitable set S, which is dense in the real line, we have

that v−1((−∞, x)) ∈ Y for every x ∈ S and for each real number t

lim
ε→0+

n(v−1((t − ε, t + ε))) = 0

holds. In this case the ν-distribution function of {v(n)} is the unique extension of the function

F(x) = ν(v−1((−∞, x))), x ∈ S, to whole real line.

2 Application to the van der Corput sequence

We recall that a q-algebra Y fulfilling the condition

A, B ∈ Y =⇒ A ∪ B ∈ Y

is called algebra. In 1946, R.C. Buck defined Buck’s measure density starting from the asymp-

totic density of arithmetic progressions. Denote r + (m) = {n ∈ N : n ≡ r (mod m)} for

m ∈ N, r ∈ N ∪ {0}. Let D0 be the algebra of all sets of the form
⋃s

i=1 ri + (mi), where mi ∈ N

and ri ∈ N ∪ {0}. Clearly D0 ⊂ D. The set function µ∗ is defined by

µ∗(S) = inf{d(A) : A ∈ D0 ∧ S ⊂ A}

for all S ⊂ N is called Buck’s measure density. Clearly µ∗ is isotonic and normalized. Moreover,

the inequality

µ∗(A ∪ B) + µ∗(A ∩ B) ≤ µ∗(A) + µ∗(B)

holds for A, B ⊂ N. Thus, the set system

Dµ = {A ⊂ N : µ∗(A) + µ∗(N \ A) = 1}

is an algebra of sets and the restriction µ = µ∗|Dµ
is density on Dµ. Clearly r + (m) ∈ Dµ and

µ(r + (m)) =
1

m

for m ∈ N and r ∈ N ∪ {0}. For the details we refer to [1, 8, 9].
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Theorem 3 implies the following assertion.

Corollary 1. A sequence {v(n)} of elements of unit interval has a continuous ν distribution

function if and only if there exists a system Sn = {0 = x
(n)
0 < x1 < · · · < x

(n)
kn

= 1}, n ∈ N,

of finite sequences of elements of the unit interval such that lim
n→∞

(x
(n)
k+1 − x

(n)
k ) = 0 uniformly

for k = 0, . . . , kn − 1, the sets v−1([x
(n)
k , x

(n)
k+1]) belong to Y and lim

n→∞
ν(v−1([x

(n)
k , x

(n)
k+1])) = 0

uniformly for k = 0, . . . , kn − 1.

The following sequence was studied firstly by van der Corput (see [3, 5, 12]). Let {Bn} be

an increasing sequence of positive integers such that Bn|Bn+1, n ∈ N. Every positive integer a

can be uniquely written in the form

a = c0 + c1B1 + · · ·+ cjBj,

where 0 ≤ c0 < B1, 0 ≤ ci <
Bi

Bi−1
, i = 2, . . . , j. This allows us associate to this a the value

v(a) =
c0

B1
+ · · ·+

cj

Bj+1
.

The following one to one correspondence between the subintervals of [0, 1) and the arithmetic

progressions plays an important role. For each subinterval [ j−1
Bk

,
j

Bk
), 1 ≤ j ≤ Bk, k ∈ N, there

exists ℓ
(k)
j ∈ {0, 1, . . . , Bk − 1} such that

n ∈ ℓ
(k)
j + (Bk) ⇐⇒ v(n) ∈

[ j − 1

Bk
,

j

Bk

)

.

A sequence {h(n)} of positive integers is called Buck uniformly distributed in Z if and only if

h−1(r + (m)) ∈ Dµ and µ(h−1(r + (m))) = 1
m for each m ∈ N and r ∈ N ∪ {0}.

Theorem 4. Let {Bk} fulfils the following condition: for all m ∈ N there exists k such that m|Bk.

Then for every sequence {kn} of positive integers the sequence {v(kn)} is Buck uniformly

distributed if and only if the sequence {kn} is Buck uniformly distributed in Z.

Theorem 5. Let g : N → N be such mapping that the condition

g(x1) ≡ g(x2) (mod Bk) ⇐⇒ x1 ≡ x2 (mod Bk)

holds for every x1, x2 ∈ N, k = 1, 2, 3, . . . . Then the sequence {v(g(n))} is Buck uniformly

distributed.

Proof. Put I
(k)
j =

[

j−1
Bk

,
j

Bk

)

. Then x ∈ v−1(I
(k)
j ) if and only if g(x) ∈ ℓ

(k)
j + (Bk), for x, k ∈ N,

0 ≤ j < Bk. The values g(1), . . . , g(Bk) are incongruent modulo Bk, k ∈ N, and so there exist

r
(k)
j such that g(r

(k)
j ) ≡ ℓ

(k)
j (mod Bk). Put u(n) = v(g(n)), n ∈ N. Then

u−1(I
(k)
j ) = r

(k)
j + (Bk)

and so u−1(I
(k)
j ) ∈ Dµ and µ(u−1(I

(k)
j )) = 1

Bk
. The end points of intervals I

(k)
j , j = 1, . . . , Bk,

k ∈ N, form a dense subset in [0, 1] and the assertion follows.
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Corollary 2. If m ∈ N is such that (m, Bk) = 1, k = 1, 2, 3, . . . , then the sequence {v(mn)} is

Buck uniformly distributed.

Corollary 3. Let s ∈ N and pj, j = 1, 2, 3, . . . , be a sequence of different primes such that

(s, pj − 1) = 1, j = 1, 2, 3, . . . . If Bk = p1 . . . pk, j = 1, 2, 3, . . . , then the sequence {v(ns)} is

Buck uniformly distributed.

Theorem 6. Let p > 2 be a prime number. Suppose that r ∈ N is a positive integer which is

primitive root modulo pα, α = 1, 2, 3, . . . . If Bk = pk, k = 1, 2, 3, . . . , then the sequence {v(rn)}

is Buck measurable and the function

F(x) =

{

0, x ≤ 1
p ,

px−1
p−1 , x ∈ ( 1

p , 1],

is its Buck’s distribution function.

Proof. Put u(n) = v(rn), n ∈ N. The numbers rn, n ∈ N, are relatively prime with p. Thus if

rn = c0 + c1p + · · ·+ cjp
j,

then c0 > 0 and so v(rn) ≥ 1
p , n ∈ N. This yields that u−1((0, 1

p )) = ∅. Suppose α > 0. For

every s ∈ N, (s, p) = 1, there exists a unique ns ∈ {0, . . . , ϕ(pα)− 1} such that

n ∈ ns + (ϕ(pα)) ⇐⇒ rn ∈ s + (pα).

This implies

u−1
([ b

pα
,

b + 1

pα

))

= ℓb + (ϕ(pα)), b = pα−1, . . . , pα − 1,

for suitable ℓb. Therefore

µ
(

u−1
([ b

pα
,

b + 1

pα

)))

=
1

p(pα−1 − 1)
.

And so a simple calculation gives

µ(u−1[0, x)) = F(x)

for x ∈ S =
{

a
pα : a = 0, . . . , pα, α ∈ N

}

. This set S is dense in the unit interval and the

assertion follows.

Theorem 7. Let pj, j = 1, 2, 3, . . . , be pairwise distinct prime numbers. Put Bk = p1 . . . pk,

k ∈ N. If f (x) is a polynomial of degree greater than 0 with positive integer coefficients, then

the sequence {v( f (n))} is Buck measurable and its Buck’s distribution function is continuous.

Proof. For every k ∈ N, r = 0, . . . , Bk − 1, we have

f (x) ∈ r + (Bk) ⇐⇒ f (x) ≡ r (mod pj), j = 1, . . . , k.

Due to the Chinese reminder theorem this system of congruences has at most dk solutions,

where d is degree of f (x). From this we can conclude that for the sequence {u(n)} ={v( f (n))}

the set u−1
([

j
Bk

,
j+1
Bk

))

is union at most dk arithmetic progression with modul Bk. Therefore it

is Buck measurable and

lim
k→∞

µ
(

u−1
([ j

Bk
,

j + 1

Bk

)))

≤ lim
k→∞

dk

Bk
= 0.
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3 Matrix density

We can apply these statements for the matrix density studied originally in the paper [2],

later in [4] and other papers.

Proposition 1. Let nk, k = 1, 2, 3, . . . , be probability measures on P(N). Then the set function

n(A) = lim sup
k→∞

nk(A)

is an outer density.

Thus the set system

Y = {A ⊂ N : n(A) + n(N \ A) = 1}

is a q-algebra and ν = n|Y is a density.

As ussualy, we denote by XS the indicator function of the set S.

Proposition 2. For A ⊂ N we have

A ∈ Y ⇐⇒ lim
k→∞

∞

∑
n=1

nk({n})XA(n) = n(A).

For a sequence {v(n)} of real numbers and an arbitrary interval I we have

Xv−1(I)(n) = XI(v(n)). (4)

This equation will be useful for the proof of the following result.

Theorem 8. A sequence {v(n)} of elements of [0, 1] is ν-continuously distributed if and only if

for each real function f , which is continuous on [0, 1],

a) the limit

lim
k→∞

∞

∑
n=1

f (v(n))nk ({n})

exists and

b) for every x ∈ [0, 1] we have

lim
ε→0+

lim sup
k→∞

∞

∑
n=1,|v(n)−x|<ε

| f (v(n))|nk ({n}) = 0.

Proof. One implication is trivial.

Using Riesz representation theorem, we can prove by standard procedure that

lim
k→∞

∞

∑
n=1

f (v(n))nk({n}) =
∫ 1

0
f (x)dg(x)

for suitable nondecreasing function g, defined on the interval [0, 1] such that g(0) = 0,

g(1) = 1. From Proposition 2 and equality (4) we can derive by standard way that for each

point x of continuity of g we have v−1([0, x)) ∈ Y and

ν(v−1([0, x))) = g(x).

Since the set of points of discontinuity of g is countable, the set of points of continuity of g is

dense in [0, 1].

Applying the condition b) to the function f (x) = 1, x ∈ [0, 1], we get

lim
ε→0+

n(v−1((x − ε, x + ε))) = 0

for each x ∈ [0, 1] and from Theorem 1 we obtain the assertion.
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For a bounded sequence {v(n)} of real numbers, it can be defined the supremum norm as

usually

||v|| = sup{|v(n)| : n ∈ N}.

Theorem 8 implies the following assertion.

Corollary 4. The set of all ν-continuously distributed sequences of elements of [0, 1] is closed

with respect to the supremum norm.

4 Measure density

The Buck’s measure density was later generalized in [7].

Let En = {E
(n)
i : i = 1, . . . , kn}, n ∈ N, be a system of decompositions of N fulfilling the

condition

for each n = 1, 2, 3, . . . , there exists m ∈ N such that

each set Ej, 1 ≤ j ≤ n, is a union of sets Ek for k ≥ m.
(5)

Denote by A the algebra of all finite unions of sets from
⋃∞

n=1 En. Suppose that ∆ is a finitely

additive probability measure on A. Let us define

δ∗(S) = inf{∆(A) : S ⊂ A, A ∈ A}. (6)

Immediately we get the following assertion.

Lemma 1. The set function δ∗ given by (6) is normalized and isotonic, moreover, for every

S1, S2 we have

δ∗(S1 ∪ S2) + δ∗(S1 ∩ S2) ≤ δ∗(S1) + δ∗(S2).

Denote

Dδ = {S ⊂ N : δ∗(S) + δ∗(N \ S) = 1}.

Lemma 1 implies the following assertion.

Proposition 3. The system of sets Dδ is an algebra of sets and the set function δ = δ∗|Dδ
is a

density on Dδ.

We say that a finite sequence a1, . . . , aj of positive integers is independent with respect to En,

n ∈ N, if and only if ai1 , ai2 belong to distinct sets from En if i1 6= i2.

Let S ⊂ N. Suppose that for given n ∈ N there is the maximal sequence s1, . . . sk of ele-

ments of S, independent with respect to En, such that sj ∈ E
(n)
ij

. Put H(S : En) = ∑
k
j=1 ∆(E

(n)
ij

).

Using the property (5), the following proposition can be proved by standard procedure (see

[8, Theorem 5]).

Proposition 4. For each S ⊂ N we have

δ∗(S) = lim
n→∞

H(S : En).

A finite sequence {a
(n)
j , j = 1, . . . , kn} of positive integers, such that a

(n)
j ∈ E

(n)
j , j = 1, . . . , kn,

will be called the representative system of En.

It is easy to observe the following two facts.
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Proposition 5. Let {a
(n)
1 , . . . , a

(n)
kn

} be a representative system for En, n ∈ N. Then for every

S ⊂ N we have

1 − H(N \ S : En) ≤
kn

∑
j=1

XS(a
(n)
j )∆(E

(n)
j ) ≤ H(S : En).

Proposition 6. For every S ⊂ N there exist representative systems {a
(n)
1 , . . . , a

(n)
kn

} and

{b
(n)
1 , . . . , b

(n)
kn

} of En such that

lim
n→∞

kn

∑
j=1

XS(a
(n)
j )∆(E

(n)
j ) = δ∗(S)

and

lim
n→∞

kn

∑
j=1

XS(b
(n)
j )∆(E

(n)
j ) = 1 − δ∗(N \ S).

And so, we get the following result.

Lemma 2. For every S ⊂ N we have S ∈ Dδ if and only if for each representative system

{a
(n)
1 , . . . , a

(n)
kn

} the equality

lim
n→∞

kn

∑
j=1

XS(a
(n)
j )∆(E

(n)
j ) = δ∗(S)

holds.

Full analogy of the proof of Theorem 8 leads to the following assertion.

Theorem 9. Let {v(n)} be a sequence of elements of [0, 1]. Then this sequence is δ-continu-

ously distributed if and only if for every continuous function f , defined on [0, 1], and for every

representative system {a
(n)
1 , . . . , a

(n)
kn

} of En, n ∈ N,

a) there exists a constant Φ( f ) such that the equality

lim
n→∞

kn

∑
j=1

f (v(a
(n)
j ))∆(E

(n)
j ) = Φ( f )

holds

and

b) for every real number x the equality

lim
ε→0+

lim sup
n→∞

kn

∑
j=1,

∣

∣v
(

a
(n)
j

)

−x
∣

∣<ε

| f (v(a
(n)
j )|∆(E

(n)
j ) = 0

holds uniformly with respect to {a
(n)
1 , . . . , a

(n)
kn

}, n ∈ N.

Theorem 8 implies the following result.

Corollary 5. The set of all δ-continuously distributed sequences of elements of [0, 1] is closed

with respect to the supremum norm.
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У першiй частинi статтi ми означаємо поняття щiльностi як певний тип скiнченно адитив-

ної ймовiрнiсної мiри та функцiї розподiлу послiдовностей за цiєю щiльнiстю. Потiм ми виво-

димо деякi простi критерiї, що забезпечують неперервнiсть функцiї розподiлу заданої послi-

довностi. Цi критерiї ми застосовуємо до послiдовностей ван дер Корпута. Доведено критерiї

типу Вейля неперервностi функцiї розподiлу.

Ключовi слова i фрази: рiвномiрний розподiл, щiльнiсть, послiдовнiсть ван дер Корпута.


