
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2021, 13 (1), 48–57 Карпатськi матем. публ. 2021, Т.13, №1, С.48–57

doi:10.15330/cmp.13.1.48-57

On distance Laplacian spectrum of zero divisor graphs of the
ring Zn

Pirzada S., Rather B.A., Chishti T.A.

For a finite commutative ring Zn with identity 1 6= 0, the zero divisor graph Γ(Zn) is a simple

connected graph having vertex set as the set of non-zero zero divisors, where two vertices x and

y are adjacent if and only if xy = 0. We find the distance Laplacian spectrum of the zero divisor

graphs Γ(Zn) for different values of n. Also, we obtain the distance Laplacian spectrum of Γ(Zn)

for n = pz, z ≥ 2, in terms of the Laplacian spectrum. As a consequence, we determine those n for

which zero divisor graph Γ(Zn) is distance Laplacian integral.
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1 Introduction

In this paper, we consider only connected, simple and finite graphs. A graph is denoted by

G = G(V(G), E(G)), where V(G) = {v1, v2, . . . , vn} is its vertex set and E(G) is its edge set.

The order of G is n = |V(G)| and its size is m = |E(G)|. The set of vertices adjacent to v ∈ V(G),

denoted by N(v), is the neighborhood of v. The degree of v, denoted by dG(v) (we simply write

dv if it is clear from the context), means the cardinality of N(v). A graph is regular if each

of its vertices has the same degree. The adjacency matrix A = (aij) of G is a (0, 1)-square

matrix of order n whose (i, j)-entry is equal to 1 if vi is adjacent to vj and equal to 0, otherwise.

Let Deg(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees di = dG(vi), i =

1, 2, . . . , n associated to G. The matrices L(G) = Deg(G)− A(G) and Q(G) = Deg(G) + A(G)

are respectively the Laplacian and the signless Laplacian matrices and these matrices are real

symmetric and positive semi-definite. We take 0 = λn ≤ λn−1 ≤ · · · ≤ λ1 to be the Laplacian

eigenvalues of L(G).

In G, the distance between two vertices u, v ∈ V(G), denoted by duv, is defined as the length

of a shortest path between u and v. The diameter of G is the maximum distance between any two

vertices of G. The distance matrix of G, denoted by D(G), is defined as D(G) = (duv)u,v∈V(G).

The transmission TrG(v) of a vertex v is defined to be the sum of the distances from v to all

other vertices in G, i.e., TrG(v) = ∑
u∈V(G)

duv. A graph G is said to be k-transmission regular if

TrG(v) = k, for each v ∈ V(G). For any vertex vi ∈ V(G), the transmission TrG(vi) is called

the transmission degree, shortly denoted by Tri and the sequence {Tr1, Tr2, . . . , Trn} is called the

transmission degree sequence of the graph G.
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Let Tr(G) = diag(Tr1 , Tr2, . . . , Trn) be the diagonal matrix of vertex transmissions of G.

Aouchiche M. and Hansen P. [2] introduced the Laplacian and the signless Laplacian for the

distance matrix of a connected graph. The matrix DL(G) = Tr(G)− D(G) is called the distance

Laplacian matrix of G, while the matrix DQ(G) = Tr(G) + D(G) is called the distance signless

Laplacian matrix of G. These matrices are real symmetric and positive semi-definite, so we

order the distance Laplacian eigenvalues as ρ1 ≥ · · · ≥ ρn−1 ≥ ρn = 0. More about DL(G) can

be seen in [2, 3, 7, 11] and the references therein.

Let R be a commutative ring with multiplicative identity 1 6= 0. A non-zero element x ∈ R

is called a zero divisor of R if there exists a non-zero y ∈ R such that xy = 0. The zero divisor

graph Γ(R) of a commutative ring R is the graph whose vertex set is the set of non-zero zero

divisors of R and two vertices x and y are adjacent if and only if xy = 0 [1]. The zero divisor

graph Γ(Zn) is of order n − φ(n)− 1, where φ is Euler’s totient function and Zn is the integer

modulo ring.

In a graph G, we write x ∼ y if vertices x and y are adjacent. We use standard notation,

Kn, Ka,b, for complete graph and complete bipartite graph. Other undefined notations and ter-

minology from algebraic graph theory, algebra and matrix theory can be found in [4, 6, 8, 10].

Investigation of spectral properties of matrices associated to graphs is always interesting

and challenging. Since it is not always possible to obtain all the zeros of the characteristic

polynomial of a matrix whose order is more than 4, therefore in most of the cases the study of

spectra is restricted to certain families of graphs. Even at times the problem becomes difficult

for a particular class of graphs. In this direction, we have considered the problem to inves-

tigate the distance Laplacian spectrum of zero divisor graphs associated to the ring Zn. We

note that the graphs associated to different algebraic structures, for instance, power graphs and

commuting graphs of groups, zero divisor graphs of rings have helped to solve several prob-

lems both in algebra and combinatorics. Adjacency eigenvalues of zero divisor graphs were

first discussed by Young M. [9]. Laplacian, signless Laplacian and distance signless Laplacian

spectral properties of zero divisor graphs were investigated in [5, 11–13].

The rest of the paper is organized as follows. In Section 2, we discuss the distance Laplacian

spectrum of the zero divisor graph Γ(Zn) for some values of n ∈ {pq, p2q, (pq)2, pz, z ≥ 2} and

show that Γ(Zn), for n ∈ {pz, pq}, is distance Laplacian integral. We have used computational

software Mathematica for computing approximate eigenvalues and characteristic polynomials

of various matrices.

2 The distance Laplacian spectrum of the zero divisor graphs

The join of two graphs G1 and G2, denoted by G1▽G2, is the union of G1 and G2 together

with edges from each vertex of G1 to every vertex of G2. The following result concerns with

the distance Laplacian spectrum of the join of two graphs.

Theorem 1. Let G1 and G2 be graphs with n1 and n2 vertices, respectively. Let λ1 ≥ λ2 ≥ · · · ≥

λn1 = 0 and µ1 ≥ µ2 ≥ · · · ≥ µn2 = 0 be the Laplacian eigenvalues of G1 and G2. Then the

distance Laplacian characteristic polynomial of G1▽G2 is

PG1▽G2
L (t) = t(t − n)(t − 2n + n2 + λ)n1−1(t − 2n + n1 + µ)n2−1,

where λ and µ are the non-zero Laplacian eigenvalues of G1 and G2, respectively.
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Proof. Let G1▽G2 be the join of the graphs G1 and G2. This is clearly a graph of diameter 2.

Let V(G1) = {v1, v2, . . . , vn1} and V(G2) = {u1, u2, . . . , un2} be the vertex sets of G1 and G2,

respectively. So V(G) = V(G1) ∪ V(G2). It is easy to see that Tr(v) = 2n − n2 − 2 − d(v), for

each v ∈ V(G1) and Tr(u) = 2n − n2 − 2 − d(u), for each u ∈ V(G2). Label the vertices of

G1▽G2, so that the first n1 vertices are from G1. With this labelling, the distance Laplacian

matrix can be put in the form

DL(G1▽G2) =

(
(2n − n2)In1 − 2Jn1 − L(G1) −Jn1×n2

−Jn2×n1 (2n − n1)In2 − 2Jn2 − L(G2)

)

,

where L(G2), Ini
and Jn1×n2 are respectively the distance Laplacian matrix, identity matrix and

the matrix whose each entry equals 1 for i = 1, 2. It is a well known fact that 0 the is Laplacian

eigenvalue of L(Gi) with the corresponding eigenvector eni
= (1, 1, . . . , 1

︸ ︷︷ ︸

ni

)T for i = 1, 2, and all

other eigenvectors of L(Gi) are orthogonal to eni
. Let x = (xi1, xi2, . . . , xini

) be the eigenvector of

an arbitrary Laplacian eigenvalue λk, 1 ≤ k ≤ ni − 1, satisfying eT
ni

x = 0. Assigning X =

(
x

0

)

and noting that Jn1×n2 x = 0, we obtain

DL(G1▽G2)X = (2n − n2 − λk)X.

This implies that 2n − n2 − λk, 1 ≤ k ≤ n1 − 1, is a distance Laplacian eigenvalue of

DL(G1▽G2) with multiplicity n1 − 1. Similarly, 2n − n1 − µj, 1 ≤ j ≤ n2 − 1, is a distance

Laplacian eigenvalue of DQ(G1▽G2). The other two distance Laplacian eigenvalues {0, n} are

the zeros of the characteristic polynomial of the following quotient matrix

(
n2 −n2

−n1 n1

)

.

This completes the proof.

If Ka,b is the complete bipartite graph with partite sets of cardinality a and b, then clearly

Ka,b = Ka▽Kb. From Theorem 1, taking n1 = a, n2 = b, and λi = µj = 0 for each i, j, we

observe that the distance Laplacian characteristic polynomial of Ka,b is

P
Ka,b

L (t) = t(t − n)(t − 2n + b)a−1(t − 2n + a)b−1.

A complete split graph, denoted by CSω,n−ω, is the graph consisting of a clique on ω ver-

tices and an independent set1 on the remaining n − ω vertices, such that each vertex of the

clique is adjacent to every vertex of the independent set. Note that CSω,n−ω = Kω▽Kn−ω.

Again, from Theorem 1, we observe that the distance Laplacian characteristic polynomial of

CSω,n−ω is

P
CSω,n−ω

L (t) = t(t − n)ω(t − 2n + ω)n−ω−1.

This is because the Laplacian spectrum of Kω is {ω[ω−1], 0}, apply Theorem 1 by taking

n1 = ω, n2 = n − ω, λi = ω for i = 2, . . . , ω, and µj = 0 for j = 2, 3, . . . , n − ω.

1 A subset of vertices of a graph is said to be an independent set if the subgraph induced by them is an empty

graph.
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The joined union of graphs is defined as follows [14]. Let G(V, E) be a graph of order n and

Gi(Vi, Ei) be graphs of order mi, where i = 1, . . . , n. The joined union G[G1, . . . , Gn] is the graph

H = (W, F) with

W =
n⋃

i=1

Vi and F =
n⋃

i=1

Ei ∪
⋃

{vi,vj}∈E

Vi × Vj.

In other words, the joined union is the union of graphs G1, . . . , Gn together with the edges

between the vertices vi ∈ V(Gi) and vj ∈ V(Gj) whenever vi and vj are adjacent in G.

The following result from [7] gives the distance Laplacian spectrum of G[G1, . . . , Gn] in

terms of the Laplacian spectrum of the graphs Gi, for i = 1, 2, . . . , n.

Theorem 2 ([7]). Let G be a graph of order n having vertex set V(G) = {v1, . . . , vn}. Let Gi be

a graph of order mi with Laplacian eigenvalues µi1 ≥ µi2 ≥ . . . ≥ µimi
, where i = 1, 2, . . . , n.

The distance Laplacian spectrum of the joined union G[G1, . . . , Gn] consists of the eigenvalues

2mi − µik + αi for i = 1, . . . , n and k = 1, 2, 3, . . . , mi − 1, where αi =
n

∑
k=1,k 6=i

mkdG(vi, vk). The

remaining n eigenvalues are given by the matrix

M =








α1 −m2dG(v1, v2) . . . −mndG(v1, vn)

−m1dG(v2, v1) α2 . . . −mndG(v2, vn)
...

...
. . .

...

−m1dG(vn, v1) −m2dG(vn, v2) . . . αn








.

An integer d is a proper divisor of n if d divides n, written as d|n, for 1 < d < n. Let Υn be

the simple graph with vertex set {d1, d2, . . . , dt} and two distinct vertices in Υn are adjacent if

and only if n|didj. If the prime power factorization of n = pn1
1 pn2

2 . . . pnr
r , where r, n1, n2, . . . , nr

are positive integers and p1, p2, . . . , pr are distinct prime numbers, the size of Υn is given by

|V(Υn)| =
r

∏
i=1

(ni + 1)− 2. For 1 ≤ i ≤ t, we consider the sets Adi
= {x ∈ Zn : (x, n) = di}. We

see that Adi
∩ Adj

= φ, when i 6= j, implying that the sets Ad1
, Ad2

, . . . , Adt
are pairwise disjoint

and partitions the vertex set of Γ(Zn) as V(Γ(Zn)) = Ad1
∪ Ad2

∪ · · · ∪ Adt
. From definition

of Adi
, a vertex of Adi

is adjacent to a vertex of Adj
in Γ(Zn) if and only if n divides didj

for i, j ∈ {1, 2, . . . , t}.

The following result from [9] gives the cardinality of Adi
.

Lemma 1 ([9]). Let di be the proper divisor of n. Then

|Adi
| = φ

(
n

di

)

for 1 ≤ i ≤ t.

The next lemma from [5] shows that the induced subgraphs Γ(Adi
) of Γ(Zn) are either

cliques or their complements.
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Lemma 2 ([5]). The following hold.

(i) For i ∈ {1, 2, . . . , t}, the induced subgraph Γ(Adi
) of Γ(Zn) on the vertex set Adi

is either

a complete graph Kφ( n
di
) or its complement Kφ( n

di
). Indeed, Γ(Adi

) is Kφ( n
di
) if and only if

n divides d2
i .

(ii) For i, j ∈ {1, 2, . . . , t} with i 6= j, a vertex of Adi
is adjacent to either all or none of the

vertices of Adj
in Γ(Zn).

The following lemma shows that Γ(Zn) is the joined union of certain complete graphs and

null graphs.

Lemma 3 ([5]). Let Γ(Adi
) be the induced subgraph of Γ(Zn) on the vertex set Adi

for 1 ≤ i ≤ t.

Then

Γ(Zn) = Υn[Γ(Ad1
), Γ(Ad2

), . . . , Γ(Adt
)].

We consider an example to find the distance Laplacian spectrum with the help of Theo-

rem 2. We know that Γ(Zn) is a complete graph if and only if n = p2 for some prime p.

Further, the adjacency spectrum of Kω and Kω on ω vertices are {ω − 1,−1[ω−1]} and {0[ω]},

respectively. So, by Theorem 2, out of n − φ(n)− 1 number of distance Laplacian eigenvalues

of Γ(Zn), n − φ(n)− 1− t of them are known to be positive integers. The remaining t distance

Laplacian eigenvalues of Γ(Zn) will count from the zeros of the characteristic polynomial of

the equitable quotient matrix M.

Example 1. Distance Laplacian eigenvalues of Γ(Z30).

Let n = 30. Then 2, 3, 5, 6, 10 and 15 are the proper divisors of n and Υn is the graph

G6 : 3 ∼ 10 ∼ 6 ∼ 5, 10 ∼ 15 ∼ 2 and 6 ∼ 15, that is, Υn is the triangle graph having a

pendent edge at each vertex of the triangle. Indexing the vertices by increasing proper divisor

sequence and applying Lemma 3, we have

Γ(Z30) = Υ30[K8, K4, K2, K4, K2, K1].

By Theorem 2, the distance Laplacian spectrum of Γ(Z30) consists of the eigenvalues

{48[4], 47[7], 37[3], 33},

and the remaining six eigenvalues are the zeros of the characteristic polynomial of the follow-

ing matrix











31 −12 −6 −8 −4 −1

−24 42 −6 −8 −2 −2

−24 −12 46 −4 −4 −2

−16 −8 −2 29 −2 −1

−16 −4 −4 −4 29 −1

−8 −8 −4 −4 −2 26












. (1)

The characteristic polynomial of matrix (1) is

x6 − 203x5 + 16167x4 − 631097x3 + 12078472x2 − 90732012x
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and its approximated zeros are

{54.8984, 52.8576, 37.2458, 31.1478, 27.0505, 0.0000}.

Now, we find the distance Laplacian spectrum of Γ(Zn) for n ∈ {pq, p2q, (pq)2, pz, z ≥ 2}

with the help of Theorems 1 and 2. Consider n = pq, where p and q, p < q, are distinct primes.

We use either Theorem 1 or Theorem 2. By Lemmas 2 and 3, we have

Γ(Zpq) = Υpq[Γ(Ap), Γ(Aq)] = K2[Kφ(p), Kφ(q)] = Kφ(p)▽Kφ(q) = Kφ(p),φ(q). (2)

Lemma 4. The distance Laplacian spectrum of Γ(Zn) consists of the eigenvalues 2n − q + 1

with multiplicity p − 2, the eigenvalue 2n − p + 1 with multiplicity q − 2, and the eigenvalues

{0, n}.

Proof. Let n = pq, where p and q, p < q, are distinct primes. Then the proper divisors of n are

p and q, so Υpq is K2. By equation (2) and Theorem 1 the result follows.

The next result gives the distance Laplacian spectrum of Γ(Zp2q) for n = p2q.

Lemma 5. The distance Laplacian spectrum of Γ(Zp2q) is

{(3pq + 2p2 − 2p − 2q)[p
2−p−1],(pq + 2p2 − 2p)[p−2], (2pq + p2 − 2p − 1)[q−2],

(3p2 + 2pq − 4p − 1)pq−p−q, x1 ≥ x2 ≥ x3 ≥ x4 = 0},

where x1, x2, x3 are the non-zero zeros of the characteristic polynomial of the quotient matrix

M(P4).

Proof. Let n = p2q, where p and q are distinct primes. Since proper divisors of n are p, q, pq, p2,

so Υp2q is the path P4 : q ∼ p2 ∼ pq ∼ p. By Lemma 3, we have

Γ(Zp2q) = Υp2q[Γ(Aq), Γ(AP2), Γ(Apq), Γ(Ap)] = P4[Kφ(p2), Kφ(q), Kφ(p), Kφ(pq)],

with respective orders m1 = φ(p2), m2 = φ(q), m3 = φ(p) and m4 = φ(pq). Further, we see

that (α1, α2, α3, α4) =
(
3pq − p − 2q, 2pq + p2 − 2p − 2q + 1, 2p2 + pq − 3p, 3p2 + 2q − 2p − 3

)

and by Theorem 2, distance Laplacian spectrum of Γ(Zp2q) consists of the eigenvalues

3pq + 2p2 − 2p − 2q, pq + 2p2 − 2p, 2pq + p2 − 2p − 1, 3p2 + 2pq − 4p − 1 with multiplici-

ties p2 − p − 1, p − 2, q − 2, pq − p − q, respectively. The remaining eigenvalues are given by

the following of the equitable quotient matrix

M(P4) =








α1 −φ(q) −2φ(p) −3φ(pq)

−φ(p2) α2 −φ(p) −2φ(pq)

−2φ(p2) −φ(q) α3 −φ(pq)

−3φ(p2) −2φ(q) −φ(p) α4








.

Clearly, each row sum of M(P4) is zero, so that 0 is its eigenvalue and the remaining eigenval-

ues are the non-zero zeros of the characteristic polynomial of M(P4).
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Lemma 6. The distance Laplacian spectrum of Γ(Z(pq)2) is

{
(3p2q + 2pq2 + 2q − 5p − 2pq)[φ(pq2)−1], (3p2q + 2pq2 − q − 2p2 − 2pq)[φ(q

2)−1],

(3p2q + 2pq2 − q − 3pq − 1)[φ(p2q)−1], (2p2q + 3pq2 + q − 2q2 − 3pq − 1)[φ(p2)−1],

(2p2q + 3pq2 + p − 6q − 4pq)[φ(pq)−1], (2p2q + 3pq2 − p − q − pq)[φ(p)−1],

(p2q + 2pq2 − 2pq − 1)[φ(q)−1]
}

and the zeros of the characteristic polynomial of the matrix M(G7) in (2).

Proof. Let n = (pq)2, where p and q, p < q, are distinct primes. Since the proper divisors of

n are p, p2, q, q2, pq, pq2 and p2q, so Υ(pq)2 is the graph G7 : q ∼ p2q ∼ q ∼ p2 ∼ pq2 ∼ p,

p2q ∼ pq. We name the vertices in G7 according to the proper divisor sequence, so by Lemma 3,

we have

Γ(Z(pq)2) = Υ(pq)2[Γ(Ap), Γ(Ap2), Γ(Aq), Γ(Aq2), Γ(Apq), Γ(Apq2), Γ(Ap2q)]

= G7[Kφ(pq2), Kφ(q2), Kφ(p2q), Kφ(p2), Kφ(pq), Kφ(p), Kφ(q)].

By Theorem 2, we have

(α1, α2, α3, α4, α5, α6, α7) =
(
3p2q + 2q2 − 5p, 3p2q + 2pq2 + q − 2p2 − 2pq,

3pq2 + 2p2 − 2p − q − pq − 1,

2p2q + 3pq2 + 2p + q − 2p2 − 2q2 − 3pq − 1,

2p2q + 3pq2 + 2p − 5q − 5pq − 1, 2p2q + pq2 − 2p − q − pq + 1,

2p2q + pq2 − 2p − q
)
.

Again, by Theorem 2, the distance Laplacian spectrum of Γ(Z(pq)2) consists of the eigenvalue

2φ(pq2) + α1 = 3p2q + 2pq2 + 2q − 5p − 2pq with multiplicity φ(pq2) − 1, the eigenvalue

3p2q+ 2pq2− q− 2p2− 2pq with multiplicity φ(q2)−1, the eigenvalue 3p2q+ 2pq2− q− 3pq− 1

with multiplicity φ(p2q)− 1, the eigenvalue 2p2q + 3pq2 + q − 2q2 − 3pq − 1 with multiplicity

φ(p2)− 1, the eigenvalue 2p2q + 3pq2 + p − 6q − 4pq with multiplicity φ(pq) − 1, the eigen-

value 2p2q+ 3pq2 − p − q− pq with multiplicity φ(p)− 1, the eigenvalue p2q + 2pq2 − 2pq − 1

with multiplicity φ(q) − 1 and the remaining seven eigenvalues are given by the following

matrix

M(G7) =














α1 −2φ(q2) −3φ(p2q) −3φ(p2) −3φ(pq) −φ(p) −2φ(q)

−2φ(pq2) α2 −3φ(p2q) −φ(p2) −3φ(pq) −φ(p) −2φ(q)

−3φ(pq2) −3φ(q2) α3 −2φ(p2) −2φ(pq) −2φ(p) −φ(q)

−3φ(pq2) −φ(q2) −2φ(p2q) α4 −2φ(pq) −2φ(p) −φ(q)

−3φ(pq2) −3φ(q2) −2φ(p2q) −2φ(p2) α5 −2φ(p) −φ(q)

−φ(pq2) −φ(q2) −2φ(p2q) −2φ(p2) −2φ(pq) α6 −φ(q)

−2φ(pq2) −2φ(q2) −φ(p2q) −φ(p2) −φ(pq) −φ(p) α7














.

By using values of α′is, we see that each row sum of the matrix M(G7) is zero, so 0 is its distance

Laplacian eigenvalue and other six eigenvalues are the non-zero zeros of the characteristics

polynomial of the above given matrix.
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Now, we find the distance Laplacian spectrum of Γ(Zn) for n = pz, z ≥ 3. We consider

n = p2m and similar type of analysis can be done for n = p2m+1. If n = p2m, then the divisor

sequence is {p, p2, . . . , p2m−1} and vertex pi is adjacent to vertex pj in Υp2m for each j ≥ 2m − i

with 1 ≤ i ≤ 2m− 1 and i 6= j. By Lemma 1, order of Gi is mi= φ(p2m−i) for i = 1, 2, . . . , 2m− 1.

Also, for i = 1, 2, . . . , m − 1, Gi = Kφ(p2m−i) and for i = m, . . . , 2m − 1, Gi = Kφ(p2m−i). From

Theorem 2, the distance Laplacian spectrum of Γ(Zn) consists of ρi = 2p2m−1 − pi − 1, with

respective multiplicities φ(p2m−i)− 1 for i = 1, 2, . . . , 2m − 1, and the remaining eigenvalues

are given by equitable quotient of Γ(Zn). We observe that ρi adds the missing entry in the

definition of αi in Theorem 2.

Now, the remaining eigenvalues of the quotient matrix can be found in several ways. One

way is to use the mathematical induction and show that the eigenvalues of quotient matrix are

those of ρi together with 0 and each with multiplicity 1 except when i 6= m. Another way is

to construct Γ(Zn) by using iteration join graphs as in [5] and use Theorem 1 continuously till

we get all the eigenvalues. The natural way is to see that Γ(Zn) is a graph of diameter two, so

that distance Laplacian spectrum of Γ(Zn) can be found in terms of spectrum of the Laplacian

matrix. For that we need the following results.

Theorem 3 ([2]). Let G be a connected graph on n vertices with diameter at most two. Then

the distance Laplacian spectrum of G is

2n − λn−1 ≥ 2n − λn−2 · · · ≥ 2n − λ1 > ρn = 0.

A matrix of order n with real entries is said to be integral, if all its eigenvalues are integers.

Likewise, a graph G is said to be integral if its associated matrix is integral.

A consequence of the above result is the following, whose proof is trivial.

Corollary 1. Let G be graph on n vertices with diameter at most two. Then G is Laplacian

integral if and only if G is distance Laplacian integral.

Theorem 4 ([5]). Let n = pz where p is prime and z ≥ 2 is a positive integer. Then the

following hold.

(i) If z = 2, then the Laplacian spectrum of Γ(Zn) is {(p − 1)[p−2], 0}.

(ii) If z = p2m for some positive integer m ≥ 2, then the Laplacian spectrum of Γ(Zn)

consists of the eigenvalue 0, the eigenvalue pi − 1 with multiplicity φ(p2m−i), where

i = 2m − 1, 2m − 2, . . . , m + 2, m + 1, m − 1, m − 2, . . . , 1 and the eigenvalue pm − 1 with

multiplicity φ(pm)− 1.

(iii) If z = p2m+1 for some positive integer m ≥ 1, then the distance Laplacian spectrum of

Γ(Zn) consists of the eigenvalue 0, the eigenvalue pi − 1 with multiplicity φ(p2m+1−i),

where i = 2m, 2m − 1, . . . , m + 2, m + 1, m − 1, m − 2, . . . , 1 and the eigenvalue pm − 1

with multiplicity φ(pm+1)− 1.
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Theorem 5. Let n = pz where p is prime and z ≥ is a positive integer. Then the following hold.

(i) If z = 2, then the distance Laplacian spectrum of Γ(Zn) is {(p − 1)[p−2], 0}.

(ii) If z = p2m for some positive integer m ≥ 2, then the distance Laplacian spectrum

of Γ(Zn) consists of the simple eigenvalue 0, the eigenvalue 2p2m−1 − p2m−i − 1 with

multiplicity φ(pi) for i = 2m − 1, 2m − 2, . . . , m + 1, m − 1, . . . , 2, 1 and the eigenvalue

2p2m−1 − pm − 1 with multiplicity φ(pm)− 1.

(iii) If z = p2m for some positive integer m ≥ 2, then the distance Laplacian spectrum

of Γ(Zn) consists of the simple eigenvalue 0, the eigenvalue 2p2m−1 − p2m−i − 1 with

multiplicity φ(pi) for i = 2m, 2m − 1, . . . , m + 1, m − 1, . . . , 2, 1 and the eigenvalue

2p2m−1 − pm − 1 with multiplicity φ(pm+1)− 1.

Proof. (i) Since Γ(Zp2) = Γ(Ap) is the complete graph Kp−1 for any prime p, so the result

follows for p > 2.

The other cases follow from Theorem 3 and Theorem 4 and using the fact that order of Zn

is n = φ(n)− 1.

Now, for n = p3, by Lemma 3 we have

Γ(Zp3) = Υp3 [Γ(Ap), Γ(Ap2)] = K2[Kφ(p2), Kφ(p)] = Kp(p−1)▽Kp−1.

This implies that Γ(Zp3) is a complete split graph of order p2 − 1, having independent set of

cardinality p(p − 1) and clique of size p − 1. By Theorem 1, distance Laplacian spectrum of

Γ(Zn) is {(2p2 − p + 1)[p
2−p−1], (p2 − 1)[p−2], 0}.

From the facts and discussions above, we have the following observation.

Corollary 2. Γ(Zn) is distance Laplacian integral if and only if n is prime power or product of

two distinct primes.

Proof. If n is either prime power or product of two distinct primes, then by Lemma 4 and

Theorem 5, it follows that the distance Laplacian eigenvalues of Γ(Zn) are integers. Also,

by Lemma 5, for p = 22, Γ(Z4q) is the complete bipartite graph and its distance Laplacian

eigenvalues are integers. For other way round, if n is the product of three primes, then

by Example 1, we get some non-integer distance Laplacian eigenvalues of Γ(Zpqr), where

p, q, r, p < q < r are primes. More generally, if n = pn1
1 pn2

2 . . . pnr
r , where r, n1, . . . , nr

are non-negative integers and pi, i = 1, 2, . . . , r, are primes, then for r ≥ 3, Γ(Zn) con-

tains the triangle n
p

n3
3

∼ n
p

n2
2

∼ n

p
n1
1

∼ n
p

n3
3

, which implies that Γ(Zn) is not complete bipar-

tite and is distance Laplacian integral. Similarly, Γ(Z
p

n1
1 p

n2
2
), n1, n2 ≥ 2, contains the triangle

pn1−1
1 pn2

2 ∼ p1 pn2−1
2 ∼ pn1

1 pn2−1
2 ∼ pn1−1

1 pn2
1 , so its zero divisor graph is not complete bipartite.

Again, for n = p2q or n = pq2, by Lemma 6, the zero divisor graph is not integral. Therefore,

Γ(Zn) is distance Laplacian integral only for n = p2, pq, 4q with p < q being primes.

Another consequence of Theorems 1 and 2 is the following.

Corollary 3. If n is either prime or product of two distinct primes, then the smallest and largest

distance Laplacian eigenvalue of Γ(Zn) is the eigenvalue of quotient matrix.
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Пiрзада С., Ратхeр Б.А., Хiштi Т.А. Про дистанцiйний лапласiановий спектр графiв дiльникiв нуля

кiльця Zn // Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 48–57.

Для скiнченного комутативного кiльця Zn з одиничним елементом 1 6= 0 граф дiльни-

кiв нуля Γ(Zn) є простим зв’язним графом, множина вершин якого є множиною ненульових

дiльникiв нуля, причому двi вершини x та y є сусiднiми тодi i тiльки тодi, коли xy = 0. Ми зна-

ходимо дистанцiйний лапласiановий спектр графiв дiльникiв нуля Γ(Zn) для рiзних значень

n. Також ми отримуємо дистанцiйний лапласiановий спектр графа Γ(Zn) для n = pz, z ≥ 2,

у термiнах лапласiанового спектра. Як наслiдок ми визначаємо тi значення n, для яких граф

дiльникiв нуля Γ(Zn) є дистанцiйним лапласiановим iнтегралом.

Ключовi слова i фрази: матриця Кiрхгофа, матриця Кiрхгофа вiдстаней, комутативне кiль-

це, граф дiльникiв нуля.


