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On coupling constant thresholds in one dimension
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The threshold behaviour of negative eigenvalues for Schrödinger operators of the type

Hλ = −
d2

dx2
+ U + λαλV(αλ·)

is considered. The potentials U and V are real-valued bounded functions of compact support, λ is

a positive parameter, and positive sequence αλ has a finite or infinite limit as λ → 0. Under certain

conditions on the potentials there exists a bound state of Hλ which is absorbed at the bottom of

the continuous spectrum. For several cases of the limiting behaviour of sequence αλ, asymptotic

formulas for the bound states are proved and the first order terms are computed explicitly.
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1 Introduction

In the seventies and eighties of the last century there has been a considerable interest in the

study of the low-energy behaviour of Hamiltonians Hλ = −∆ + λV, especially of the small λ

behavior of bound states and zero-energy resonances, as well in the study of the absorption

of eigenvalues by the continuous spectrum. It is known that in three dimensions there is no

bound state of Hλ, if V is a sufficiently shallow well. In contrast to this case, a suitable short-

range potential in one or two dimensions can produce a bound state for all small λ. For the

case of the one-dimensional Hamiltonian − d2

dx2 + λV, Simon [1] proved that if
∫

R
V(x) dx ≤ 0

and
∫

R
(1 + |x|2)|V(x)| dx < ∞, then the operator has a unique negative eigenvalue eλ for all

positive λ such that eλ approaches zero as λ → 0. This result has been extended by Klaus [2] to

the class of potentials V obeying
∫

R
(1+ |x|)|V(x)| dx < ∞. Moreover, if

∫

R
ea|x||V(x)| dx < ∞,

for instance, V is of compact support, then the eigenvalue eλ is analytic in λ at λ = 0.

The question of how negative eigenvalues are absorbed at the bottom of the essential spec-

trum has been discussed by many authors [3, 6–16]. It is worth noting that the threshold be-

haviour is also strongly dependent on the dimension of space [3]. In two dimensions eλ is

exponentially small as λ → 0; in one dimension, eλ ∼ cλ2 with c 6= 0 if
∫

R
V dx < 0 and

eλ ∼ cλ4 if
∫

R
V dx = 0. The threshold behaviour as a general perturbation phenomenon

has been investigated in [4, 5], where in particular one gives an answer to the question what

will happen with the eigenvalue eλ in the limit – will it disappear or remain as an eigenvalue

embedded in the continuous spectrum?
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In [5], some general theorems about the existence and threshold behavior of eigenvalues

for self-adjoint operators of the form A+ λB have been applied to several special cases. One of

them has been concerned with the threshold behavior of Hamiltonian − d2

dx2 + U + λV, where

U and V are of compact support. The Schrödinger operator has a small negative bound state

in the limit of weak coupling (not necessarily a unique one), if a certain relation between

the potentials U and V holds. Namely, − d2

dx2 + U + λV has the coupling constant threshold

λ = 0, if operator − d2

dx2 + U possesses a zero-energy resonance with half-bound state h and
∫

R
Vh2 dx < 0. A unique eigenvalue eλ that converges to zero as λ → 0 is analytic at λ = 0 and

obeys

eλ = −λ2

(

1

h2
+ + h2

−

∫

R

Vh2 dx

)2

+ O(λ3) as λ → 0,

where h± = lim
x→±∞

h(x). If
∫

R
Vh2 dx > 0, λ = 0 is not a coupling constant threshold. If

∫

R
Vh2 dx = 0 and supp V lies between two consecutive zeros of h, then there exists a bound

state near zero for all small enough λ (positive and negative). The precise definitions of the

coupling constant threshold, zero-energy resonances and half-bound states will be given in

the next section. Klaus M. seems to have been the first to notice the close connection between

zero-energy resonances of the unperturbed operator and the threshold phenomenon for the

operator subject to certain short-range perturbations. For a treatment of the threshold phe-

nomena for Hamiltonians with periodic potentials perturbed by short range ones we refer the

reader to [5, 17, 18].

For the spectral theory, the threshold behaviour of eigenvalues and resonances of Schrö-

dinger operators as they are absorbed by the continuous spectrum is interesting in itself.

However the study of this phenomenon is relevant to the stability of solutions for the

Korteweg-de Vries equation [19] as well as to the existence of “breathers” – nonlinear waves

in which energy concentrates in a localized and oscillatory fashion – for discrete nonlinear

Schrödinger systems [20, 21].

The aim of this paper is a detailed analysis of the threshold behaviour of negative eigenval-

ues for 1D Schrödinger operators having the form

Hλ = −
d2

dx2
+ U(x) + λαλV(αλx),

dom Hλ = W2
2 (R). Here U and V are L∞(R)-functions of compact support and λ is a positive

parameter. We assume that positive sequence {αλ}λ>0 has a finite or infinite limit as λ → 0.

The perturbation λαλV(αλ·) of operator H0 = − d2

dx2 + U combines the scaling of potential V

in two directions. Regarding the product λαλ as a coupling constant, we see that this constant

can both be infinitely small and infinitely large as λ → 0; the support of the perturbation can

shrink to a point in the limit if αλ → +∞, extend to the whole line if αλ → 0, or remain actually

a fixed size if αλ tends to a positive number. The spectrum of Hλ consists of at most a finite

number of negative eigenvalues and the essential spectrum [0, ∞). Under certain conditions

on the potentials U and V the operator Hλ has a unique bound state eλ that is absorbed at the

bottom of the essential spectrum as λ goes to zero (as λ is continued in the opposite direction

the bound state emerges from the essential spectrum). The threshold bound state eλ may or

may not be the ground state. Our method is different from that of Simon B. and Klaus M.;

we don’t use the Birman-Schwinger principle. We obtain a part of our results from the norm
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resolvent convergence of Schrödinger operators with (aδ′ + bδ)-like potentials [22,23,25,26]; to

prove the rest ones we use the asymptotic method of quasimodes or in other words of “almost”

eigenvalues and eigenfunctions.

2 Main Results

In this section we give the main results of this paper. We start with some definitions.

Definition 1. Let A and Bλ be self-adjoint operators and Bλ be relatively A-compact for all

λ > 0 (then σess(A + Bλ) = σess(A)). Suppose that interval (a, b) is a gap in the spectrum of A

and b ∈ σess(A). If we can find an eigenvalue eλ of A + Bλ in gap (a, b) for all λ > 0 with the

property that eλ → b − 0 as λ → 0, then we call λ = 0 the coupling constant threshold.

There are different definitions of the zero-energy resonances for Schrödinger operators, but

in one dimension it is convenient for us to use the following one.

Definition 2. We say operator H0 = − d2

dx2 +U possesses a zero-energy resonance if there exists

a non trivial solution h of the equation −h′′ + Uh = 0 that is bounded on the whole line. We

then call h the half-bound state.

Set h± = limx→±∞ h(x); the limits exist, because the half-bound state is constant outside

supp U as a bounded solution of equation h′′ = 0. Also, both the values h± are different

from zero, and so h 6∈ L2(R). Since a half-bound state is defined up to a scalar multiplier, we

renormalize it by defining u = h/h− . We call u the normalized half-bound state. Let θ hereafter

denote the limit of the normalized half-bound state as x → +∞, i.e., θ := limx→+∞ u(x),

provided limx→−∞ u(x) = 1.

Theorem 1. Suppose that H0 = − d2

dx2 + U has a zero-energy resonance with normalized half-

bound state u. If one of the following conditions is fulfilled

(i) αλ → α for some positive α and
∫

R
V(α ·)u2 dx < 0;

(ii) αλ → +∞, u(0) 6= 0 and
∫

R
V dx < 0;

(iii) αλ → 0, λ−1αλ → ∞ and
∫

R−
V dx + θ2

∫

R+
V dx < 0,

then Hλ = H0 + λαλV(αλ·) possesses the coupling constant threshold λ = 0, i.e., for all small

positive λ there exists a negative eigenvalue eλ of Hλ such that eλ → 0 as λ → 0. In addition,

eλ = −λ2(k2 + o(1)) as λ → 0, where

k =
α

θ2 + 1

∫

R

V(α ·)u2 dx if αλ → α and α > 0;

k =
u2(0)

θ2 + 1

∫

R

V dx if αλ → +∞;

k =
1

θ2 + 1

∫

R−

V dx +
θ2

θ2 + 1

∫

R+

V dx if αλ → 0.

We will point out two consequences of the theorem. Note that the trivial potential U has a

zero-energy resonance with half-bound state u = 1. Then θ = 1, u(0) = 1 and so all conditions

(i)–(iii) become
∫

R
V dx < 0 as well as all formulas for k convert into k = 1

2

∫

R
V dx. We have

proved the following assertion.
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Corollary 1. Assume U= 0. If sequence αλ has a finite or infinite limit as λ→ 0 and
∫

R
V dt< 0,

then operator − d2

dx2 + λαλV(αλ·) possesses the coupling constant threshold λ = 0 with the

eigenvalue

eλ = −
λ2

4

(

∫

R

V dx

)2

+ o(λ2) as λ → 0.

It is worth mentioning here that Theorem XIII.110 in [28, p.338] states in particular that in

the case V ∈ C∞
0 (R) the operator − d2

dx2 + λV(x) has a negative eigenvalue for all positive λ

if
∫

R
V dx < 0. Moreover, in that case this eigenvalue is analytic in λ at λ = 0. The proof of

this assertion is based on the analyticity of some determinants. Theorem 1 and Corollary 1

deal with the non-analytic family of operators and gives us an example of the non-analytic

threshold behaviour.

The theorem also contains the cases when the coupling constant λαλ is infinitely large. In

this instance one could consider that the large coupling constant is neutralized by the rapid

localization of the short range potential.

Corollary 2. If H0 has a zero-energy resonance with normalized half-bound state u, u(0) 6= 0

and
∫

R
V dx < 0, then the operators

−
d2

dx2
+ U(x) +

1

λκ−1
V
( x

λκ

)

, κ ≥ 1,

possess the coupling constant threshold λ = 0 with the eigenvalue eλ obeying

eλ = −λ2

(

u2(0)

θ2 + 1

∫

R

V dx

)2

+ o(λ2) as λ → 0.

In particular, this is true for the operator − d2

dx2 + U(x) + V
(

x
λ

)

.

Theorem 1 describes the absorption of an eigenvalue by the continuous spectrum with the

rate cλ2. However the absorption is also possible at higher rates, when the inequalities in

conditions (i)–(iii) turn into equalities.

Theorem 2. Assume V ∈ W1
2 (R) and αλ → α as λ → 0 for some α > 0. Suppose also that H0

has a zero-energy resonance and u is a normalized half-bound state. If

∫

R

V(α ·) u2 dx = 0,
∫

R

xV′(α ·) u2 dx < 0, (1)

and λ−1/3(αλ − α) → ∞ as λ → 0, then Hλ = H0 + λαλV
(

αλx
)

has the coupling constant

threshold λ = 0, and the corresponding eigenvalue admits asymptotics

eλ = −λ2(αλ − α)2

(

(

α

θ2 + 1

∫

R

xV′(α ·) u2 dx

)2

+ o(1)

)

as λ → 0.

The next theorem describes the case of threshold behaviour, when the support of pertur-

bation λαλV(αλ·) is small and shrinks to a point in the limit.
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Theorem 3. Assume αλ → +∞ and operator H0 possesses a zero-energy resonance with nor-

malized half-bound state u. If
∫

R

V dx = 0, u(0)u′(0)
∫

R

xV dx < 0, (2)

and αλ = o(λ−1/3) as λ → 0, then Hλ has the coupling constant threshold λ = 0; the infinitely

small eigenvalue obeys

eλ = −
λ2

α2
λ

(

(

2u(0)u′(0)

θ2 + 1

∫

R

xV(x) dx

)2

+ o(1)

)

as λ → 0.

Let us introduce the function

Θ(x) =

{

1 for x < 0,

θ for x > 0.
(3)

Theorem 4. Assume that αλ → 0, potential V is continuous at the origin, operator H0 has

a zero-energy resonance and u is a normalized half-bound state. Suppose also the following

conditions hold
∫

R−

V dx + θ2
∫

R+

V dx = 0, V(0)
∫

R

(u2 − Θ
2) dx < 0, (4)

and λ1/4α−1
λ → 0 as λ → 0. Then Hλ has the coupling constant threshold λ = 0 with the

eigenvalue eλ obeying

eλ = −λ2α2
λ

(

(

V(0)

θ2 + 1

∫

R

(u2 − Θ
2) dx

)2

+ o(1)

)

as λ → 0.

The last theorem concerns the absorption of an eigenvalue by the continuous spectrum

when the support of perturbation λαλV(αλ·) extends to the whole line in the limit.

Remark 1. The assertions of Theorems 2 – 4 are not valid for any potential V, if U is trivial.

Indeed, in this case u = 1 and we see that u′(0) = 0 and u2 −Θ2 = 0 in (2) and (4) respectively.

As for (1), after integrating by parts we obtain

∫

R

xV′(αx) dx = −
1

α

∫

R

V(αx) dx < 0

that contradicts to condition
∫

R
V(αx) dx = 0. Consequently, these results can not be com-

pared with those of Simon B., when the small eigenvalue is analytic at λ = 0.

Remark 2. The assumption λ−1/3(αλ − α) → ∞ in Theorem 2, as well as the similar assump-

tions αλ = o(λ−1/3) and λ1/4α−1
λ → 0 in Theorems 3 and 4 respectively, is of a purely technical

nature and is related to our approximation method for eigenfunctions. For instance, Theo-

rem 2 does not cover the case αλ = 1 which has been studied by Klaus M. [5] and in which

the threshold phenomenon exists. To drop or at least to weaken these conditions, we have

to make up some additional assumptions on the limiting behaviour of αλ; we must also look

for more precise asymptotic approximation to the negative eigenvalue and the corresponding

eigenfunction (see recent publication [24]).
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3 Proof of Theorem 1

We start with an auxiliary assertion. Let us consider the operator H(κ, β) defined by

H(κ, β)φ = −φ′′ on functions φ in W2
2 (R \ {0}), subject to the coupling conditions at the

origin
(

φ(+0)

φ′(+0)

)

=

(

κ 0

β κ−1

)(

φ(−0)

φ′(−0)

)

. (5)

Lemma 1. If κβ < 0, then operator H(κ, β) possesses a unique eigenvalue

E = −

(

κβ

κ2 + 1

)2

.

Proof. We look for a nontrivial L2(R)-solution of equation −φ′′ + ω2φ = 0 satisfying (5). If

such a solution exists, then it has the form φ(x) = c1eωx for x < 0 and φ(x) = c2e−ωx for x > 0,

where ω is positive. Substituting φ into (5) yields

(

κ −1

β + κ−1ω ω

)(

c1

c2

)

= 0.

Since φ is a non-zero function, the matrix must be degenerate. Hence

(κ + κ−1)ω + β = 0.

The last equation admits a positive solution ω = − κβ

κ2+1
if κβ < 0. Therefore H(κ, β) has

negative eigenvalue E = −
(

κβ

κ2+1

)2
with the eigenfunction φ(x) = eωx if x < 0 and φ(x) =

κe−ωx if x > 0.

To prove Theorem 1, apply the convergence results for Schrödinger operators with

(aδ′ + bδ)-like potentials. Let us consider the two-parameter family of operators

Sλν = −
d2

dt2
+ λ−2U(λ−1t) + ν−1V(ν−1t), dom Sλν = W2

2 (R).

In [26], the norm resolvent convergence of Sλν was established as positive parameters λ and

ν tend to zero simultaneously. If operator H0 possesses a zero-energy resonance, then there

exist three different cases of the limiting behaviour of Sλν depending on the limit of ratio ν/λ.

Rescaling x = t/λ of the coordinate yields

Sλν = λ−2

(

−
d2

dx2
+ U(x) + λ2ν−1V(λν−1x)

)

= λ−2
(

H0 + λ2ν−1V(λν−1x)
)

.

If we will connect the parameters ν and λ by relation νλ = λ/αλ, then Sλ = λ−2Hλ, where Sλ

stands for Sλ,νλ
.

First assume αλ = λ
νλ

→ α as λ → 0 and α > 0. In this case Sλ converge in the norm

resolvent sense to operator H(θ, β) associated with point interaction (5), where κ = θ and

β = αθ−1
∫

R

V(αx) u2(x) dx,
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(see [26, Theorem 4.1]). In view of Lemma 1, operator H(θ, β) has a negative eigenvalue E,

because

θβ = α

∫

R

V(αx) u2(x) dx < 0

by assumption (i) of the theorem. In addition, E = −k2 with

k =
θβ

θ2 + 1
=

α

θ2 + 1

∫

R

V(αx) u2(x) dx.

The norm resolvent convergence Sλ → H(θ, β) implies that there exists an eigenvalue Eλ of Sλ

such that Eλ → E as λ → 0. Since Sλ = λ−2Hλ, operator Hλ possesses a negative eigenvalue

eλ = λ2Eλ such that eλ = −λ2(k2 + o(1)) as λ → 0.

Now let αλ → ∞ as λ → 0. In view of [26, Theorem 5.1], operators Sλ converge in the norm

resolvent sense to H(θ, β), where

β = θ−1u2(0)
∫

R

V dx.

The limit operator admits a negative eigenvalue E = −k2, since

θβ = u2(0)
∫

R

V dx < 0

by assumption. In this case we have

k =
θβ

θ2 + 1
=

u2(0)

θ2 + 1

∫

R

V dx.

Therefore Hλ = λ2Sλ possesses a negative eigenvalue of order O(λ2) as λ → 0.

Finally, in the case αλ → 0 we apply [26, Theorem 3.1]. The family Sλ converges to H(θ, β)

as λ → 0 in the sense of uniform convergence of resolvents, where

β = θ−1
∫

R−

V dt + θ

∫

R+

V dt.

Condition (iii) of the theorem ensures the existence of negative eigenvalue E = −k2 for H(θ, β)

with

k =
1

θ2 + 1

∫

R−

V dx +
θ2

θ2 + 1

∫

R+

V dx,

because θβ=
∫

R−
V dt + θ2

∫

R+
V dt < 0. Hence there exists a small negative eigenvalue eλ of Hλ.

4 Proof of Theorem 2

We will apply the method of quasimodes. Let A be a self-adjoint operator in a Hilbert

space L.

Definition 3. We say a pair (µ, φ) ∈ R × dom A is a quasimode of operator A with accuracy δ,

if ‖φ‖L = 1 and ‖(A − µ)φ‖L ≤ δ.

Lemma 2 ([27, p.139]). Assume (µ, φ) is a quasimode of A with accuracy δ > 0 and the spec-

trum of A is discrete in interval [µ − δ, µ + δ]. Then there exists an eigenvalue λ of A such that

|λ − µ| ≤ δ.
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The proof of the lemma is simple. Indeed, if µ 6∈ σ(A), then the distance dµ from µ to the

spectrum of A is computed as

d−1
µ = ‖(A − µI)−1‖ = sup

ψ 6=0

‖(A − µI)−1ψ‖L

‖ψ‖L
.

Here ψ is an arbitrary vector of L. Taking ψ = (A − µ)φ, we deduce

d−1
µ ≥

‖φ‖L

‖(A − µI)φ‖L
≥ δ−1,

and therefore dµ ≤ δ, from which the assertion of the lemma follows.

Without loss of generality we here and henceforth assume that the supports of potentials

U and V lie within I = (−b, b) for some b > 0. Then a half-bound state u is constant outside

I and its restriction to I is a non-trivial solution of the problem

−u′′ + Uu = 0, t ∈ I , u′(−b) = 0, u′(b) = 0. (6)

Moreover, since u is a normalized half-bound state, u(−b) = 1 and u(b) = θ.

We will construct a family of quasimodes (−ω2
λ, φλ) of Hλ as follows. Let as introduce

infinitesimal ελ = αλ − α as λ → 0 and set ωλ = λελkλ for positive kλ. We also write φλ =

ψλ/‖ψλ‖, where

ψλ(x) =















eωλ(x+b) for x < −b,

u(x) + λv(x) + λελwλ(x) for |x| < b,

a0,λ e−ωλ(x−b) + a1,λρ(x − b) for x > b.

Here and subsequently, ‖ · ‖ stands for the norm in L2(R). Suppose that v and wλ are solutions

of the problems

− v′′ + Uv = −V0u, v(−b) = 0, v′(−b) = 0; (7)

− w′′ + Uw = −ε−1
λ (Vλ − V0)u, w(−b) = 0, w′(−b) = kλ (8)

respectively; V0 = αV(α ·) denotes the limit of potentials Vλ = αλV(αλ·) as λ → 0 and aj,λ are

some real quantities. Note that the support of V(αλ ·) lies within I for λ small enough as well

as ελ is different from zero, because λ−1/3ελ → ∞. Function ρ : R+ → R is smooth, ρ(0) = 0,

ρ′(0) = 1 and ρ(x) = 0 for x ≥ 1. This function will be used to correct the discontinuity of ψ′
λ.

We also note that u, v and wλ belong to W2
2 (I) as solutions of −y′′ + Uy = f with f ∈ L2(I).

Let us show that a0,λ, a1,λ and kλ can be chosen in such a way that ψλ will belong to dom Hλ.

By construction, ψλ is continuously differentiable at point x = −b. We now make ψλ and ψ′
λ

continuous at x = b. Since u(b) = θ and ρ(0) = 0, we have [ψλ]b = a0,λ − θ − λv(b) −

λελwλ(b), where [ · ]x denotes the jump of a function at the point x. Set a0,λ = θ + λv(b) +

λελwλ(b). Next, we derive

[ψ′
λ]b = −ωλa0,λ + a1,λρ′(0)− λv′(b)− λελw′

λ(b)

= −λv′(b)− λελ

(

w′
λ(b) + θkλ

)

+ a1,λ − λ2ελkλv(b)− λ2ε2
λkλwλ(b),
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since ρ′(0) = 1. Multiplying the equation in (7) by half-bound state u and integrating by parts

twice over I yield

θv′(b) =
∫

I
V0u2 dx = α

∫

R

V(αx)u2(x) dx,

and hence v′(b) = 0, by (1). Applying the same considerations to (8), we obtain

θw′
λ(b)− kλ = ε−1

λ

∫

R

(Vλ − V0)u
2 dx. (9)

Note that we will often replace integrals over supports of integrands with integrals over R and

vice versa without commenting on it. In order to obtain the continuity of ψ′
λ at x = b, we set

w′
λ(b) = −θkλ, a1,λ = λ2ελkλ

(

v(b) + ελwλ(b)
)

, (10)

since v′(b) = 0. Also, combining (9) and the first equality in (10) yields

kλ = −
1

ελ(θ2 + 1)

∫

R

(Vλ − V0)u
2 dx. (11)

Proposition 1. Under the assumptions of Theorem 2, the value kλ, given by (11), admits

asymptotics

kλ = −
α

θ2 + 1

∫

R

xV′(α ·) u2 dx + o(1) as λ → 0.

Proof. Since αλ = α + ελ, we have

ε−1
λ (Vλ(x)− V0(x)) = ε−1

λ (αλV(αλx)− αV(αx))

= ε−1
λ ((α + ελ)V(αλx)− αV(αx)) = V(αλx) + αε−1

λ (V(αλx)− V(αx)).

Then we deduce from the continuity of the finite difference operator that

V(αλx) + αε−1
λ (V(αλx)− V(αx))

= V(αλx) + αx
V(αλx)− V(αx)

(αλ − α)x
→ V(αx) + αxV′(αx) as λ → 0

in L2(R), provided V ∈ W1
2 (R). Recalling

∫

R
V(α ·) u2 dx = 0, we obtain

ε−1
λ

∫

R

(Vλ − V0)u
2 dx →

∫

R

(V(α ·) + αxV′(α ·))u2 dx = α

∫

R

xV′(α ·)u2 dx,

which finishes the proof.

In view of the proposition above, the values of kλ, and therefore ωλ, are positive for λ

small enough, if the inequality in (1) holds. Hence ψλ is a L2(R)-function, because both the

exponents e±ωλ(x±b) decrease as x → ∓∞ respectively. Moreover we chose a0,λ and a1,λ so that

ψλ belongs to W2
2 (R), and hence ψ ∈ dom Hλ. Since

‖wλ‖W2
2 (I)

≤ c1(|kλ|+ ε−1
λ ‖(Vλ − V0)‖L2(I)) ≤ c2

by Proposition 1, we have

‖ψλ‖L2(I) ≤ c1. (12)

In addition, an easy computation shows that

cω−1/2
λ ≤ ‖ψλ‖ ≤ Cω−1/2

λ (13)

with some constants c and C being independent of λ.
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Lemma 3. The pair (−ω2
λ, φλ) is a quasimode of Hλ with accuracy o(ω2

λ) as λ → 0.

Proof. If we set rλ = (Hλ + ω2
λ)ψλ, then (Hλ + ω2

λ)φλ = ‖ψλ‖
−1rλ. We must estimate the

L2-norm of remainder rλ in order to obtain the accuracy of the quasimodes. Let us first suppose

|x| > b. Since the exponents e±ωλ(x±b) are exact solutions of −ψ′′ + ω2
λψ = 0 and supp ρ =

[0, 1], we have

rλ(x) = −a1,λ(ρ
′′(x − b)− ω2

λρ(x − b)) for b ≤ x ≤ b + 1 (14)

and rλ(x) = 0 for other x from set {x : |x| > b}. Since ρ and ρ′′ are bounded on [0, 1], rλ is of

order a1,λ as λ → 0. Namely,

max
|x|≥b

|rλ(x)| = max
b≤x≤b+1

|rλ(x)| ≤ c1|a1,λ| ≤ c2λ2ελ, (15)

by (10). Next, recalling (6)–(8), we derive

rλ =

(

−
d2

dx2
+ U + λVλ + ω2

λ

)

ψλ = (−u′′ + Uu) + λ(−v′′ + Uv + V0u)

+ λελ

(

− w′′
λ + Uwλ + ε−1

λ (Vλ − V0)u
)

+ λ2Vλv + λ2ελVλwλ + ω2
λψλ

= λ2
(

Vλv + ελVλwλ + ε2
λk2

λψλ

)

for |x| < b. Hence ‖rλ‖L2(I) = O(λ2) as λ → 0, because (12) holds. Finally, ‖rλ‖ = O(λ2) as

λ → 0, by (15). Therefore using (13), we obtain

‖(Hλ + ω2
λ)φλ‖ = ‖ψλ‖

−1‖rλ‖ ≤ c1λ5/2ε1/2
λ ≤ c2ω2

λ(λ
1/2ε−3/2

λ ).

Recall we are assuming λ−1/3ελ → ∞. Hence λ1/2ε−3/2
λ → 0 as λ → 0, and the lemma

follows.

Since (−ω2
λ, φλ) is a quasimode of Hλ with accuracy o(ω2

λ) and the negative semiaxis is free

of the continuous spectrum, there exists an eigenvalue eλ of Hλ such that |eλ + ω2
λ| = o(ω2

λ)

as λ → 0, by Lemma 2. Therefore the the eigenvalue of Hλ admits the asymptotics

eλ = −λ2ε2
λk2

λ(1 + o(1)) = −λ2(αλ − α)2

(

(

α

θ2 + 1

∫

R

xV′(α ·) u2 dx

)2

+ o(1)

)

as λ goes to zero, which proves the theorem.

5 Proof of Theorem 3

As in the previous section, the proof consists in the construction of proper quasimodes of

Hλ. Since αλ → ∞, we set ωλ = λkλα−1
λ for some positive kλ and write φλ = ψλ/‖ψλ‖, where

ψλ(x) =















eωλ(x+b) for x < −b,

u(x) + λ
αλ

vλ(x) + λ2

α2
λ

wλ(x) for |x| < b,

a0,λ e−ωλ(x−b) + a1,λρ(x − b) for x > b.
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Here u is the normalized half-bound state of H0; vλ and wλ solve the problems

− v′′ + Uv = −αλVλu, v(−b) = 0, v′(−b) = kλ; (16)

− w′′ + Uw = −αλVλvλ, w(−b) = 0, w′(−b) = 0 (17)

respectively. Recall that Vλ = αλV(αλ·). As above, we will show that there exist a0,λ, a1,λ and

a positive quantity kλ such that ψλ ∈ domHλ.

The Cauchy data in (16) and (17), together with conditions u(−b) = 1 and u′(−b) = 0,

ensure the continuity of ψλ and ψ′
λ at point x = −b. Next, if we set a0,λ = θ + λ

αλ
vλ(b) +

λ2

α2
λ

wλ(b), then [ψλ]b = 0. We also have

[ψ′
λ]b = −ωλa0,λ + a1,λ − λ

αλ
v′λ(b)−

λ2

α2
λ

w′
λ(b)

= − λ
αλ

(

θkλ + v′λ(b)
)

+ a1,λ − λ2kλ

α2
λ

vλ(b)−
λ3kλ

α3
λ

wλ(b)−
λ2

α2
λ

w′
λ(b).

To achieve [ψ′
λ]b = 0, assume

v′λ(b) = −θkλ, a1,λ = λ2kλ

α2
λ

(

vλ(b) +
1
kλ

w′
λ(b) +

λ
αλ

wλ(b)
)

. (18)

Multiplying the equation in (16) by u and integrating by parts twice yield

θv′λ(b) = kλ + αλ

∫

R

Vλu2 dx. (19)

Upon substituting v′λ(b) = −θkλ into the last equality, we derive

kλ = −
αλ

θ2 + 1

∫

R

Vλu2 dx. (20)

The next statement will allow us to construct the asymptotics of kλ.

Proposition 2. Assume that
∫

R
V dx = 0 and g ∈ W2

2,loc(R). Then

αλ

∫

R

Vλg dx = g′(0)
∫

R

xV(x) dx + o(α−1/2
λ )

as αλ → ∞.

Proof. Recall we are assuming supp V ⊂ I = (−b, b) and hence supp V(αλ ·) lies within the

small interval Iλ = (− b
αλ

, b
αλ
). Then we deduce

αλ

∫

R

Vλg dx = α2
λ

∫

Iλ

V(αλx)g(x) dx

= αλ

∫

I
V(t)g( t

αλ
) dt = αλ

∫

I
V(t)

(

g(0) + g′(0) t
αλ

+ β( t
αλ
)
)

dt

= g′(0)
∫

I
tV(t) dt + αλ

∫

I
V(t)β( t

αλ
) dt,

where β(x) =
∫ x

0 (x − s)g′′(s) ds. Since g′′ ∈ L2(I), we have

|β(x)| =

∣

∣

∣

∣

∫ x

0
(x − s)g′′(s) ds

∣

∣

∣

∣

≤ |x|

∣

∣

∣

∣

∫ x

0
|g′′(s)| ds

∣

∣

∣

∣

≤ ‖g′′‖L2(I)|x|
3/2.

Hence |β( t
αλ
)| ≤ c|t|3/2α−3/2

λ for t ∈ I , which completes the proof.
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Let us apply the proposition to the integral in the right-hand side of (20):

kλ = −
2u(0)u′(0)

θ2 + 1

∫

R

xV(x) dx + o(α−1/2
λ ) as λ → 0. (21)

Hence kλ has a finite limit as λ → 0 and the inequality in (2) ensures that kλ and ωλ are positive

for λ small enough.

As in the proof of Lemma 3, the remainder rλ = (Hλ + ω2
λ)ψλ is given by (14), provided

|x| > b, and therefore it has the same order of smallness as a1,λ in (18). We next have for x ∈ I

rλ =
(

− d2

dx2 + U + λVλ + ω2
λ

)

(

u + λ
αλ

vλ + λ2

α2
λ

wλ

)

= (−u′′ + Uu) + λ
αλ
(−v′′λ + Uvλ + αλVλu) + λ2

α2
λ

(−w′′
λ + Uwλ + αλVλvλ)

+ λ3

αλ
Vλwλ + ω2

λψλ = λ3V(αλ ·)wλ + ω2
λψλ.

(22)

Proposition 3. If vλ and wλ are solutions of (16) and (17) respectively, then

‖vλ‖C1(I) ≤ c1αλ, ‖wλ‖C1(I) ≤ c2α2
λ.

The constants cj do not depend on λ.

Proof. Let u1 be the solution of −y′′ + Uy = 0 such that u1(x) = x + b for x ≤ −b. This

solution is linearly independent with u. It is easy to check that

vλ(x) = kλu1(x) + αλ

∫ x

− b
αλ

K(x, s)Vλ(s)u(s) ds,

where K(x, s) = u(s)u1(x)− u(x)u1(s). Then
∣

∣

∣

∣

∣

∫ x

− b
αλ

K(x, s)Vλ(s)u(s) ds

∣

∣

∣

∣

∣

≤ αλ

∫

Iλ

|K(x, s)| |V(αλs)| |u(s)| ds ≤ c1αλ

∫

Iλ

ds ≤ c2,

for all x ∈ I and therefore we estimate

max
x∈I

|vλ(x)| ≤ |kλ|max
x∈I

|u1(x)|+ αλ

∣

∣

∣

∣

∣

∫ x

− b
αλ

K(x, s)Vλ(s)u(s) ds

∣

∣

∣

∣

∣

≤ c1αλ.

We similarly obtain the bound maxx∈I |v
′
λ(x)| ≤ c1αλ, since

v′λ(x) = kλu′
1(x) + αλ

∫ x

− b
αλ

K′
x(x, s)Vλ(s)u(s) ds.

We also apply the estimates above to the solution

wλ(x) = αλ

∫ x

− b
αλ

K(x, s)Vλ(s)vλ(s) ds

of (17) and derive |wλ(x)| ≤ cα2
λ for all x ∈ I . Finally, we deduce

|w′
λ(x)| ≤ αλ

∫

Iλ

|K′
x(x, s)| |Vλ(s)| |vλ(s)| ds ≤ cα2

λ.
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Returning now to (18) and (22), we have the bounds

|a1,λ| ≤ c1λ2α−2
λ

(

|vλ(b)|+ |w′
λ(b)|+ λα−1

λ |wλ(b)|
)

≤ c2λ2,

‖V(αλ·)wλ‖
2
L2(I)

=
∫

Iλ

|V(αλ ·)wλ|
2 dx ≤ c3α4

λ

∫

Iλ

dx ≤ c4α3
λ,

in view of Proposition 3. Therefore ‖rλ‖ ≤ c4(λ
2 + λ3α3/2

λ ) ≤ c5λ2, by (12) and the assumption

αλ = o(λ−1/3) as λ → 0. Recalling the definition of φλ and estimate (13), we conclude

‖(Hλ + ω2
λ)φλ‖ = ‖ψλ‖

−1‖rλ‖ ≤ c6ω1/2
λ λ2 ≤ c7ω2

λλ1/2α3/2
λ ,

where λ1/2α3/2
λ tends to zero. Therefore the pair (−λ2k2

λα−2
λ , φλ) is a quasimode of Hλ with

accuracy o(ω2
λ) and so Hλ possesses a small negative eigenvalue eλ with the asymptotics

−λ2α−2
λ (k2

λ + o(1)) as λ → 0, where kλ is given by (21).

6 Proof of Theorem 4

In the case when αλ goes to zero, the support of Vλ lies in Iλ = (−bα−1
λ , bα−1

λ ) and extends

to the whole line as λ → 0. Therefore we will look for the approximation to an eigenfunction

of Hλ in the form

ψλ(x) =















eωλ(x+bα−1
λ ) for x < −bα−1

λ ,

u(x) + λαλ vλ(x) for |x| < bα−1
λ ,

a0,λ e−ωλ(x−bα−1
λ ) + a1,λρ(x − bα−1

λ ) for x > bα−1
λ ,

where ωλ = λαλkλ. Set φλ = ψλ/‖ψλ‖. Here, as usual, u is the normalized half-bound state

of H0; vλ solves the problems

−v′′ + Uv = −V(αλx)u(x), v(−bα−1
λ ) = 0, v′(−bα−1

λ ) = kλ. (23)

We assume a0,λ = θ + λαλvλ(bα−1
λ ), a1,λ = λ2α2

λvλ(bα−1
λ ) and kλ = −θ−1v′λ(bα−1

λ ), which en-

sures that ψλ and ψ′
λ have no jump discontinuities at x = ±bα−1

λ and therefore ψλ ∈ W2
2,loc(R).

To prove that ψλ ∈ dom Hλ, we must check that kλ is positive. From (23) we as above derive

θv′λ(bα−1
λ )− kλ =

∫

R

V(αλx)u2(x) dx.

Combine this equality and v′λ(bα−1
λ ) = −θkλ, to deduce

kλ = −
1

θ2 + 1

∫

R

V(αλx)u2(x) dx. (24)

Proposition 4. Under the assumptions of Theorem 4,

∫

R

V(αλ ·)u
2 dx = V(0)

∫

R

(u2 − Θ
2) dx + o(αλ) as αλ → 0,

where Θ is given by (3).



On coupling constant thresholds in one dimension 35

Proof. Recalling the fact that u(x) = 1 for x < −b and u(x) = θ for x > b, we have

∫

R

V(αλx)u2(x) dx =
1

αλ

∫

R

V(t)u2
(

t
αλ

)

dt

=
1

αλ





bαλ
∫

−bαλ

V(t)u2
(

t
αλ

)

dt +

−bαλ
∫

−∞

V(t) dt + θ2

+∞
∫

bαλ

V(t) dt



 .

Now condition
∫

R−
V dx + θ2

∫

R+
V dx = 0 implies

−bαλ
∫

−∞

V(t) dt + θ2

+∞
∫

bαλ

V(t) dt = −

0
∫

−bαλ

V(t) dt − θ2

bαλ
∫

0

V(t) dt,

and we thereby obtain

∫

R

V(αλx)u2(x) dx =
1

αλ





bαλ
∫

−bαλ

V(t)u2
(

t
αλ

)

dt −

0
∫

−bαλ

V(t) dt − θ2

bαλ
∫

0

V(t) dt





=
1

αλ

bαλ
∫

−bαλ

V(t)
(

u2
(

t
αλ

)

− Θ
2(t)

)

dt =
1

αλ

∫

R

V(t)
(

u2
(

t
αλ

)

− Θ
2(t)

)

dt,

since u(α−1
λ ·)− Θ has a compact support lying within [−bαλ, bαλ]. Thus

∫

R

V(αλx)u2(x) dx =
1

αλ

∫

R

V(t)
(

u2
(

t
αλ

)

− Θ
2
(

t
αλ

))

dt

= V(0)
∫

R

(u2 − Θ
2) dx + o(αλ) as αλ → 0,

because Θ = Θ(α−1
λ ·), V is continuous at x = 0 and α−1

λ

(

u2(α−1
λ ·)− Θ2(α−1

λ ·)
)

is a δ-like

sequence. Recall that ε−1
∫

R
w
(

x
ε

)

η(x) dx → η(0)
∫

R
w dx, as ε goes to zero, for any w ∈ L1(R)

and η ∈ C(R).

In view of Proposition 4, we then obtain from (24) the asymptotic formula

kλ = −
V(0)

θ2 + 1

∫

R

(u2 − Θ
2) dx + o(αλ) as λ → 0.

Consequently, kλ remains bounded as λ → 0 and is positive for small λ, by (4).

Proposition 5. There exists a constant C such that

|vλ(x)| ≤ Cα−2
λ

for all x ∈ (−b/αλ, b/αλ).

Proof. The solution of (23) can be written as

vλ(x) =
bkλ

αλ
u(x) + kλu1(x) +

∫ x

−b/αλ

K(x, s)V(αλs)u(s) ds,
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where u1 and K are the same as in the proof of Proposition 3. Since

|u1(x)| ≤ C1(|x|+ 1), |K(x, s)| ≤ C2(|x|+ |s|+ 1)

for all x, s ∈ R and kλ is bounded on λ, we derive

|vλ(x)| ≤ c1α−1
λ + c2(|x|+ 1) + c3

x
∫

−b/αλ

(|x|+ |s|+ 1) ds ≤ Cα−2
λ ,

provided x belongs to (−b/αλ, b/αλ).

As before, in Sections 4 and 5, we must estimate the remainder rλ = (Hλ + ω2
λ)ψλ having

the form

rλ(x) =















λ2α2
λV(αλx)vλ(x) + ω2

λψλ(x) for |x| < b
αλ

,

−λ2α2
λvλ(

b
αλ
)
(

ρ′′(x − b
αλ
)− ω2

λρ(x − b
αλ
)
)

for b
αλ

≤ x ≤ b
αλ

+ 1,

0 otherwise.

Applying Proposition 5, we obtain that

‖ψλ‖ ≥ c1ω−1/2
λ , ‖ψλ‖L2(Iλ)

≤ c2α−1/2
λ , ‖V(αλ·)vλ‖L2(Iλ)

≤ c3α−5/2,

and hence recalling condition λ1/4α−1
λ → 0 gives us

‖rλ‖ ≤ λ2α2
λ‖V(αλ·)vλ‖L2(Iλ)

+ω2
λ‖ψλ‖L2(Iλ)

+λ2α2
λ|vλ(bα−1

λ )|‖ρ′′ −ω2
λρ‖L2(0,1) ≤ c4λ2α−1/2

λ .

Finally we have

‖(Hλ + ω2
λ)φλ‖ = ‖ψλ‖

−1‖rλ‖ ≤ c5ω1/2
λ λ2α−1/2

λ ≤ c6ω2
λλ1/2α−2

λ ,

where λ1/2α−2
λ → 0 as λ → 0. Therefore (−λ2α2

λk2
λ, φλ) is a quasimode of Hλ with accuracy

o(ω2
λ). Existence of the quasimode ensures the existence of the eigenvalue eλ = −ω2

λ, where

ωλ = λαλ

(

V(0)

θ2 + 1

∫

R

(u2 − Θ
2) dx + o(1)

)

as λ → 0.

Remark 3. The proof of Theorem 1 is based on the norm resolvent convergence of Hamilto-

nians − d2

dx2 + λ−2U(λ−1x) + ν−1V(ν−1x). This convergence can be also proved for potentials

obeying
∫

R

(1 + |x|)|U(x)| dx < ∞,
∫

R

(1 + |x|)|V(x)| dx < ∞

(see [25], where the case of δ′-like potential has been treated) and therefore we can extend

the class of admissible potentials. This is also true in relation to the rest results of this paper,

because we can use the WKB-approximations of solutions as |x| → ∞ in place of the exponents

aλe±ωλx in the structure of quasimodes.
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Головатий Ю.Д. Про порогову поведiнку вiд’ємних власних значень для одновимiрних операторiв

Шрединґера // Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 22–38.

У цiй статi вивчаємо порогову поведiнку власних значень операторiв Шрединґера

Hλ = −
d2

dx2
+ U + λαλV(αλ·),

де U та V — дiйснозначнi потенцiали з компактними носiями, а додатна послiдовнiсть αλ має

скiнченну або нескiнченну границю, коли додатний параметр λ прямує до нуля. Ми встано-

вили умови на потенцiали, при яких iснує вiд’ємне власне значення оператора Hλ, яке при

λ → 0 поглинається нижньою межею неперервного спектру. Для кiлькох випадкiв граничної

поведiнки послiдовностi αλ побудованi асимптотичнi формули для таких власних значень.

Ключовi слова i фрази: одновимiрний оператор Шрединґера, порогове значення сталої взає-

модiї, вiд’ємний зв’язний стан, резонанс нульової енергiї, напiвзв’язний стан, δ′-потенцiал, то-

чкова взаємодiя.


