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On coupling constant thresholds in one dimension

Golovaty Yu.D.

The threshold behaviour of negative eigenvalues for Schrodinger operators of the type

d2

Hy=—g72

+ U+ /\DCAV((X/\')

is considered. The potentials U and V are real-valued bounded functions of compact support, A is
a positive parameter, and positive sequence a, has a finite or infinite limit as A — 0. Under certain
conditions on the potentials there exists a bound state of Hy which is absorbed at the bottom of
the continuous spectrum. For several cases of the limiting behaviour of sequence «,, asymptotic
formulas for the bound states are proved and the first order terms are computed explicitly.
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1 Introduction

In the seventies and eighties of the last century there has been a considerable interest in the
study of the low-energy behaviour of Hamiltonians ), = —A + AV, especially of the small A
behavior of bound states and zero-energy resonances, as well in the study of the absorption
of eigenvalues by the continuous spectrum. It is known that in three dimensions there is no
bound state of H,, if V is a sufficiently shallow well. In contrast to this case, a suitable short-
range potential in one or two dimensions can produce a bound state for all small A. For the
case of the one-dimensional Hamiltonian —dd—; + AV, Simon [1] proved that if [ V(x)dx <0
and [ (14 |x?)|V(x)|dx < oo, then the operator has a unique negative eigenvalue e, for all
positive A such that e) approaches zero as A — 0. This result has been extended by Klaus [2] to
the class of potentials V obeying [ (14 [x|)|V(x)|dx < co. Moreover, if [ e?*|V(x)|dx < oo,
for instance, V' is of compact support, then the eigenvalue e, is analyticin A at A = 0.

The question of how negative eigenvalues are absorbed at the bottom of the essential spec-
trum has been discussed by many authors [3,6-16]. It is worth noting that the threshold be-
haviour is also strongly dependent on the dimension of space [3]. In two dimensions e, is
exponentially small as A — 0; in one dimension, e, ~ cA? with ¢ # 0 if [, Vdx < 0and
ex ~ cA*if [ Vdx = 0. The threshold behaviour as a general perturbation phenomenon
has been investigated in [4, 5], where in particular one gives an answer to the question what
will happen with the eigenvalue e, in the limit — will it disappear or remain as an eigenvalue
embedded in the continuous spectrum?
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In [5], some general theorems about the existence and threshold behavior of eigenvalues
for self-adjoint operators of the form A + AB have been applied to several special cases. One of
them has been concerned with the threshold behavior of Hamiltonian — dd—; + U + AV, where
U and V are of compact support. The Schrodinger operator has a small negative bound state
in the limit of weak coupling (not necessarily a unique one), if a certain relation between
the potentials U and V holds. Namely, —dd—; + U + AV has the coupling constant threshold

A = 0, if operator —dd—; + U possesses a zero-energy resonance with half-bound state / and
Jg VH?dx < 0. A unique eigenvalue e, that converges to zero as A — 0 is analytic at A = 0 and
obeys

2
1
— 2 2 3
ey = —A (hi—{—hz/]RVh dx> +0O(A’) asA =0,

where hy = hrf h(x). If [ Vh*dx > 0, A = 0 is not a coupling constant threshold. If
X—>100

Jg VI?dx = 0 and supp V lies between two consecutive zeros of h, then there exists a bound
state near zero for all small enough A (positive and negative). The precise definitions of the
coupling constant threshold, zero-energy resonances and half-bound states will be given in
the next section. Klaus M. seems to have been the first to notice the close connection between
zero-energy resonances of the unperturbed operator and the threshold phenomenon for the
operator subject to certain short-range perturbations. For a treatment of the threshold phe-
nomena for Hamiltonians with periodic potentials perturbed by short range ones we refer the
reader to [5,17,18].

For the spectral theory, the threshold behaviour of eigenvalues and resonances of Schro-
dinger operators as they are absorbed by the continuous spectrum is interesting in itself.
However the study of this phenomenon is relevant to the stability of solutions for the
Korteweg-de Vries equation [19] as well as to the existence of “breathers” — nonlinear waves
in which energy concentrates in a localized and oscillatory fashion — for discrete nonlinear
Schrodinger systems [20,21].

The aim of this paper is a detailed analysis of the threshold behaviour of negative eigenval-
ues for 1D Schrodinger operators having the form

42
H/\ = _W + U(x) + AD&AV(DéAX),
dom H, = W3(RR). Here U and V are L*(R)-functions of compact support and A is a positive
parameter. We assume that positive sequence {a) },~¢ has a finite or infinite limit as A — 0.
The perturbation Aa)V(«,-) of operator Hy = —% + U combines the scaling of potential V
in two directions. Regarding the product Aa, as a coupling constant, we see that this constant
can both be infinitely small and infinitely large as A — 0; the support of the perturbation can
shrink to a point in the limitif xy — +o0, extend to the whole line if xy — 0, or remain actually
a fixed size if a) tends to a positive number. The spectrum of H, consists of at most a finite
number of negative eigenvalues and the essential spectrum [0, o). Under certain conditions
on the potentials U and V the operator H, has a unique bound state e, that is absorbed at the
bottom of the essential spectrum as A goes to zero (as A is continued in the opposite direction
the bound state emerges from the essential spectrum). The threshold bound state e, may or
may not be the ground state. Our method is different from that of Simon B. and Klaus M,;
we don’t use the Birman-Schwinger principle. We obtain a part of our results from the norm
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resolvent convergence of Schrédinger operators with (a8’ + bé)-like potentials [22,23,25,26]; to
prove the rest ones we use the asymptotic method of quasimodes or in other words of “almost”
eigenvalues and eigenfunctions.

2 Main Results
In this section we give the main results of this paper. We start with some definitions.

Definition 1. Let A and B) be self-adjoint operators and B, be relatively A-compact for all
A > 0 (then oess(A + B)) = 0ess(A)). Suppose that interval (a,b) is a gap in the spectrum of A
and b € 0ps5(A). If we can find an eigenvalue e, of A+ B, in gap (a,b) for all A > 0 with the
property thatey — b —0as A — 0, then we call A = 0 the coupling constant threshold.

There are different definitions of the zero-energy resonances for Schrodinger operators, but
in one dimension it is convenient for us to use the following one.

Definition 2. We say operator Hy = — % + U possesses a zero-energy resonance if there exists
a non trivial solution h of the equation —h" 4+ Uh = 0 that is bounded on the whole line. We
then call h the half-bound state.

Set hy = limy_, 4+ h(x); the limits exist, because the half-bound state is constant outside
supp U as a bounded solution of equation #”" = 0. Also, both the values h. are different
from zero, and so h ¢ Ly(IR). Since a half-bound state is defined up to a scalar multiplier, we
renormalize it by defining u = h/h_. We call u the normalized half-bound state. Let 0 hereafter
denote the limit of the normalized half-bound state as x — o0, i.e., 0 := limy_, 4o u(x),
provided limy_, o u(x) = 1.

Theorem 1. Suppose that Hy = —dd—; + U has a zero-energy resonance with normalized half-
bound state u. If one of the following conditions is fulfilled

(i) ) — a for some positive x and [ V(a-)u? dx < 0;
(ii) ap — +oo,u(0) #0and [ Vdx <0;
(iii) &y —0,A 'y > coand [ Vdx+62 [p Vdx <0,

then Hy = Hp + Aa)V(«,-) possesses the coupling constant threshold A = 0, i.e., for all small
positive A there exists a negative eigenvalue ey of Hy such thatey, — 0 as A — 0. In addition,
ey = —A%2(k* 4+ 0(1)) as A — 0, where

__« N2 . )
k—ez_l_l/]RV((x Jucdx if xy - aanda > 0;

1%(0)
62 +1

! /vm+ [ Vix ifa, -0
02+1Jr_ 02 +1 R, '

We will point out two consequences of the theorem. Note that the trivial potential U has a
zero-energy resonance with half-bound state # = 1. Then 6 = 1, u(0) = 1 and so all conditions
(i)—(iii) become [ Vdx < 0 as well as all formulas for k convert into k = : Jgr V dx. We have
proved the following assertion.

k:

/ Vidx if ay — +o0;
R
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Corollary 1. Assume U = 0. If sequence &) has a finite or infinite limitas A — 0 and [V dt <0,
then operator —% + Aa)\V(ay-) possesses the coupling constant threshold A = 0 with the
eigenvalue

A2 2
e=—7 (/]Rde> +0(A%) asA — 0.

It is worth mentioning here that Theorem XIII.110 in [28, p.338] states in particular that in
the case V € C§°(R) the operator —% + AV(x) has a negative eigenvalue for all positive A
if [z Vdx < 0. Moreover, in that case this eigenvalue is analytic in A at A = 0. The proof of
this assertion is based on the analyticity of some determinants. Theorem 1 and Corollary 1
deal with the non-analytic family of operators and gives us an example of the non-analytic
threshold behaviour.

The theorem also contains the cases when the coupling constant Ax, is infinitely large. In
this instance one could consider that the large coupling constant is neutralized by the rapid
localization of the short range potential.

Corollary 2. If Hy has a zero-energy resonance with normalized half-bound state u, u(0) # 0
and [ V dx <0, then the operators

a2 1 X
—W—FU(X)—F—AK_l V(F>’ KZ 1,

possess the coupling constant threshold A = 0 with the eigenvalue e) obeying

e-ﬂﬁzzm&/VM2+dﬂ)%A%0
AT 62 +1J/r '

In particular, this is true for the operator —dd—; +U(x)+V (5).

Theorem 1 describes the absorption of an eigenvalue by the continuous spectrum with the
rate cA%2. However the absorption is also possible at higher rates, when the inequalities in
conditions (i)—(iii) turn into equalities.

Theorem 2. AssumeV € W;(R) and ay — a as A — 0 for some « > 0. Suppose also that Hy
has a zero-energy resonance and u is a normalized half-bound state. If

/]RV(oc-)uzdx:O, /]RxV'(rx-)uzdx<0, (1)

and A™1/3(a)y —a) — 00 as A — 0, then Hy, = Hy + )ux,\V(rxAx) has the coupling constant
threshold A = 0, and the corresponding eigenvalue admits asymptotics

er = —A%(ay —a)? (((ﬂaﬁ /RxV’(a ) u? dx)z +0(1)> asA — 0.

The next theorem describes the case of threshold behaviour, when the support of pertur-
bation Aw) V' («,-) is small and shrinks to a point in the limit.
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Theorem 3. Assume ), — +o0 and operator Hy possesses a zero-energy resonance with nor-
malized half-bound state u. If

/]R Vdx=0,  u(0)u'(0) /IRdex <0, (2)

and ay = 0o(A~1/3) as A — 0, then H, has the coupling constant threshold A = 0; the infinitely
small eigenvalue obeys

A2 [ (2u(0)u’(0) 2
ey = —g ((W/va(x) dx) +o(1) asA — 0.
Let us introduce the function

1 forx <0,
O(x) = 3
(x) {9 for x > 0. ©)

Theorem 4. Assume that «y — 0, potential V is continuous at the origin, operator Hy has
a zero-energy resonance and u is a normalized half-bound state. Suppose also the following
conditions hold

Vdx+6% | Vdx=0, V(O)/ (u?> —@*)dx <0, (4)
R_ Ry R

and A/ 4&/{1 — 0 as A — 0. Then H, has the coupling constant threshold A = 0 with the
eigenvalue e) obeying

2
ey = —A%a3 ((;2/:(_))1 /]R(u2 - @2)dx> +0(1)> asA — 0.

The last theorem concerns the absorption of an eigenvalue by the continuous spectrum
when the support of perturbation Aa)V(a,-) extends to the whole line in the limit.

Remark 1. The assertions of Theorems 2—4 are not valid for any potential V, if U is trivial.
Indeed, in this case u = 1 and we see that u’(0) = 0 and u?> — ®? = 0 in (2) and (4) respectively.
As for (1), after integrating by parts we obtain

1
/ xV' (ax)dx = ——/ V(ax)dx <0
R a JR
that contradicts to condition [ V(ax)dx = 0. Consequently, these results can not be com-
pared with those of Simon B., when the small eigenvalue is analytic at A = 0.

Remark 2. The assumption A~/3(x)y — &) — oo in Theorem 2, as well as the similar assump-
tionsay = o(A"1/3) and A1/ 4&/{1 — 01in Theorems 3 and 4 respectively, is of a purely technical
nature and is related to our approximation method for eigenfunctions. For instance, Theo-
rem 2 does not cover the case ay = 1 which has been studied by Klaus M. [5] and in which
the threshold phenomenon exists. To drop or at least to weaken these conditions, we have
to make up some additional assumptions on the limiting behaviour of x,; we must also look
for more precise asymptotic approximation to the negative eigenvalue and the corresponding
eigenfunction (see recent publication [24]).
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3 Proof of Theorem 1

We start with an auxiliary assertion. Let us consider the operator #(x, ) defined by
H(x,B)¢p = —¢" on functions ¢ in W3(R \ {0}), subject to the coupling conditions at the

origin
(#50) = (G2 (00), ®

Lemma 1. If kB < 0, then operator H(x, B) possesses a unique eigenvalue

2
E—_ (X
k2+1) °
Proof. We look for a nontrivial L?(R)-solution of equation —¢"" + w?¢ = 0 satisfying (5). If

such a solution exists, then it has the form ¢(x) = c1e“* for x < 0 and ¢(x) = cre”“* for x > 0,
where w is positive. Substituting ¢ into (5) yields

(v o) () =0

Since ¢ is a non-zero function, the matrix must be degenerate. Hence

(k+x Hw+p=0.

The last equation admits a positive solution w = —Kf 51 if kB < 0. Therefore H(x, B) has
2

negative eigenvalue E = — <K2K—<€1> with the eigenfunction ¢(x) = e“* if x < 0 and ¢(x) =

ke~ “Yif x > 0. O

To prove Theorem 1, apply the convergence results for Schrodinger operators with
(ad" + bd)-like potentials. Let us consider the two-parameter family of operators

Sy =—75+APUN ) +v V(v ), domS,, = W3(R).

In [26], the norm resolvent convergence of S,, was established as positive parameters A and
v tend to zero simultaneously. If operator Hy possesses a zero-energy resonance, then there
exist three different cases of the limiting behaviour of S,, depending on the limit of ratio v/A.
Rescaling x = t/A of the coordinate yields

2
Spw=A"2 <—dd? +U(x) + sz_lV()w_lx)> =772 (HO + sz_lV()w_lx)) :

If we will connect the parameters v and A by relation vy = A/a,, then S, = A"2H,, where S,

stands for S ,, .

First assume o) = VA —+ axas A — 0Oand a« > 0. In this case S, converge in the norm

resolvent sense to operator (6, B) associated with point interaction (5), where x = 6 and

B = 1x91/IRV(rxx) u?(x)dx,



28 Golovaty Yu.D.

(see [26, Theorem 4.1]). In view of Lemma 1, operator H (6, B) has a negative eigenvalue E,
because

0 =« / V(ax) u?(x)dx <0
R
by assumption (i) of the theorem. In addition, E = —k? with

_ B _ 2
k—92+1—92+1/1RV(0¢x)u (x)dx.

The norm resolvent convergence S, — # (0, ) implies that there exists an eigenvalue E) of S,
such that E, — E as A — 0. Since Sy = A~2H,, operator H, possesses a negative eigenvalue
ey = A’E, such thatey, = —A?(k? +0(1)) as A — 0.

Now letay — o0 as A — 0. In view of [26, Theorem 5.1], operators S, converge in the norm
resolvent sense to (6, B), where

B = 6_1u2(0)/ Vdx.
R
The limit operator admits a negative eigenvalue E = —k?, since
06 = u2(0) / Vdx <0
R

by assumption. In this case we have

0B
211 e2+1r ™

Therefore H, = A2S, possesses a negative eigenvalue of order O(A?) as A — 0.
Finally, in the case ay — 0 we apply [26, Theorem 3.1]. The family S, converges to #(6, B)
as A — 0 in the sense of uniform convergence of resolvents, where

/5:9*1/ vit+e [ vt
R_

Ry
Condition (iii) of the theorem ensures the existence of negative eigenvalue E = —k? for 1 (6, B)
with
Vd
92 +1 / 92 1R

because = [, V dt + 62 JrV dt < 0. Hence there exists a small negative eigenvalue e, of H,.

4 Proof of Theorem 2

We will apply the method of quasimodes. Let A be a self-adjoint operator in a Hilbert
space L.

Definition 3. We say a pair (4, ¢) € R x dom A is a quasimode of operator A with accuracy 6,
if ¢l =1 and [[(A = p)pl[L < J.

Lemma 2 ([27, p.139]). Assume (u, ¢) is a quasimode of A with accuracy § > 0 and the spec-
trum of A is discrete in interval [ — 6, u + 6]. Then there exists an eigenvalue A of A such that
A —pu| <94.
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The proof of the lemma is simple. Indeed, if 4 ¢ o(A), then the distance d;, from y to the
spectrum of A is computed as

_ _ A—ul)™!
dylz”(A_VD 1H:SUP ”( HV ) ¢|‘L
P#0 Pl

Here ¢ is an arbitrary vector of L. Taking ¢ = (A — )¢, we deduce

g1 ¢l > 61
ol (A—=uDellL —

and therefore d;, < §, from which the assertion of the lemma follows.

Without loss of generality we here and henceforth assume that the supports of potentials
U and V lie within Z = (—b, b) for some b > 0. Then a half-bound state u is constant outside
7 and its restriction to 7 is a non-trivial solution of the problem

—u"+Uu=0, teZ, u'(=b) =0, u'(b)=0. (6)

Moreover, since u is a normalized half-bound state, u(—b) = 1 and u(b) = 6.
We will construct a family of quasimodes (—w?,$,) of H, as follows. Let as introduce
infinitesimal e, = o) —a as A — 0 and set w, = Ae, k) for positive k). We also write ¢, =

Y/ l[¢all, where

e (x+D) for x < —b,
Pa(x) = S u(x) + Av(x) + Aeywy (x) for |x| < b,
ap ) e—walx=b) 4 mp(x —b) forx >b.

Here and subsequently, || - || stands for the norm in L,(IR). Suppose that v and w, are solutions
of the problems
—o"+Uv=-Vou, ov(-b)=0, v(=b)=0; (7)
—w +Uw=—&; (Vi = Vo)u,  w(=b)=0, w'(-b) =k, (8)

respectively; Vo = aV(« -) denotes the limit of potentials V) = a,V(«)-) as A — 0 and 4;, are
some real quantities. Note that the support of V(«, -) lies within Z for A small enough as well
as ¢, is different from zero, because A~1/3¢) — co. Function p: Ry — R is smooth, p(0) = 0,
p'(0) = 1and p(x) = 0 for x > 1. This function will be used to correct the discontinuity of .
We also note that 1, v and w, belong to W2(Z) as solutions of —y” + Uy = f with f € Ly(Z).

Let us show that ag 5, 41 » and k) can be chosen in such a way that i, will belong to dom H,.
By construction, 1, is continuously differentiable at point x = —b. We now make 1, and ¢,
continuous at x = b. Since u(b) = 6 and p(0) = 0, we have [,], = apr — 60 — Av(b) —
Ae wy (b), where [ -]y denotes the jump of a function at the point x. Set g, = 0 + Av(b) +
Aejywy (b). Next, we derive

[Pl = —waao +a1,00'(0) — AV'(b) — Aeyw) (b)
= —)\U/(b) — )\8/\ (w;\(b) + QkA) + an — )LZSAkAU(b) - Azsﬁk,\w,\(b),
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since p’(0) = 1. Multiplying the equation in (7) by half-bound state u and integrating by parts
twice over 7 yield

00 (b) = / Vou? dx = a/ V(ax)u?(x) dx,
I R
and hence v’(b) = 0, by (1). Applying the same considerations to (8), we obtain
6w (b) — ky = 8;1/ (Vy — Vo)u dx. )
R

Note that we will often replace integrals over supports of integrands with integrals over R and
vice versa without commenting on it. In order to obtain the continuity of ¢} at x = b, we set

wh(b) = —0ky,  apn = A2erky (v(b) + e wa (b)), (10)
since v’ (b) = 0. Also, combining (9) and the first equality in (10) yields
_ 1 2
k,\ = SA(QZ n 1) /]R(VA V())u dx. (11)

Proposition 1. Under the assumptions of Theorem 2, the value k,, given by (11), admits

asymptotics
o

ky=—
AT T2
Proof. Since o) = a + ¢€,, we have

/ xV'(«-)u?dx +o(1) asA — 0.
R

(VA (x) = Vo)) = &3 (aaV(arx) — aV (ax))
=, ((a+e))V(aax) —aV(ax)) = V(ayx) +ae;  (V(apx) — V(ax)).
Then we deduce from the continuity of the finite difference operator that
V(apx) + aey  (V(apx) — V(ax))
V(apx) — V(ax)
() —a)x
in L2(R), provided V € W3 (R). Recalling [, V(a -) u? dx = 0, we obtain

sAl/R(VA—VO)uzdx% /R(V(oc-) +axV' (a-))u? dx = oc/RxV'(w)uzdx,

= V(apx) + ax — V(ax) +axV'(ax) asA —0

which finishes the proof. O

In view of the proposition above, the values of k), and therefore w,, are positive for A
small enough, if the inequality in (1) holds. Hence ¢, is a L,(R)-function, because both the
exponents etwr(xEb) decrease as x — Foo respectively. Moreover we chose 4 5 and a; , so that
i, belongs to W2(IR), and hence ¢ € dom H,. Since

leorllwa(zy < cr(lkal + e 1I(Va = Vo)l yz) < 2

by Proposition 1, we have
[Yallr2z) < ca (12)

In addition, an easy computation shows that
-1/2 -1/2
cwy V2 < gl < Cawy (13)

with some constants ¢ and C being independent of A.
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Lemma 3. The pair (—w3, ¢,) is a quasimode of H) with accuracy o(w?) as A — 0.

Proof. If we set ry = (Hy + w?3)9y, then (H) + w?)py = ||a]|"'rx. We must estimate the
Ly-norm of remainder r) in order to obtain the accuracy of the quasimodes. Let us first suppose
|x| > b. Since the exponents e*“2(**) are exact solutions of —1" + w3y = 0 and suppp =
[0,1], we have

ra(x) = —apa(p” (x —b) —wip(x — b)) forb<x<b+1 (14)

and 7, (x) = 0 for other x from set {x: |x| > b}. Since p and p” are bounded on [0, 1], r, is of
order a;  as A — 0. Namely,

- < < cpA%e 15
mg!m(m pnax ()] < alaa] < cadey, (15)

by (10). Next, recalling (6)—(8), we derive

dx?
+ AS)\( — ’(,UX + Uw, +SX1(VA — Vo)u) —}—)LZV)L’() —}—)LZS)LV)\ZU)\ —}—CU/Z\IIJ)L
= )2 <V)L’() + e Vyiw, + SﬁkilI)A)

dZ
A= ( +U+)\VA+W§> ¥a = (—u" +Uu) + A(—=0" + Uv + Vou)

for x| < b. Hence [|ry[|1,(z) = O(A%) as A — 0, because (12) holds. Finally, ||r,[| = O(A?) as
A — 0, by (15). Therefore using (13), we obtain

I(Hy +w)gall = lgall ~Hirall < e1d>?)/? < e} (A12,%72).

Recall we are assuming A~1/3¢, — co. Hence A/ ZSX?’/ 2 5 0as A — 0, and the lemma
follows. O

Since (—w?, ¢, ) is a quasimode of H, with accuracy o(w? ) and the negative semiaxis is free
of the continuous spectrum, there exists an eigenvalue e of Hy such that |ey + w?| = o(w?)
as A — 0, by Lemma 2. Therefore the the eigenvalue of H) admits the asymptotics

2
en = —A23Kk3 (14 0(1)) = —A%(ay —a)? ((0211 /RxV’((x-) u? dx) +0(1)>

as A goes to zero, which proves the theorem.

5 Proof of Theorem 3

As in the previous section, the proof consists in the construction of proper quasimodes of
H,. Since ay, — 00, we set w) = Akmx;l for some positive k) and write ¢, = P, /|||, where

eWA(x+D) for x < —b,

Pa(x) = {u(@) + 2 oa(x) + 4

Fwy(x)  for x| <b,
A

g\ e~ wrx=b) 4 amp(x —b) forx > b.
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Here u is the normalized half-bound state of Hy; v, and w, solve the problems

— 0" 4+ Uv = —a) Vyu, v(=b) =0, V' (=b) =ky; (16)
—w" +Uw = —a)Vyv,, w(—b) =0, w'(-b)=0 (17)

respectively. Recall that V) = a,V(«a)-). As above, we will show that there exist a¢ », a1 , and
a positive quantity k, such that y, € domH,.

The Cauchy data in (16) and (17), together with conditions u(—b) = 1 and u'(—b) = 0,
ensure the continuity of i, and ¢, at point x = —b. Next, if we set ap, = 60 + % vp(b) +

i—gw)\(b), then [¢,], = 0. We also have
()]s = —wador + a1 — 2= V) (D) — 2—%2 w) (b)
— 2 (6K + 04 (b)) +ar — &QA‘A oA (b) — “K1 2, (b) — A—g wh (b).

To achieve [¢} ], = 0, assume

0y (b) = —0ky,  ayy = %A(m(b) + & w) (b) + & wr (D). (18)
Multiplying the equation in (16) by u and integrating by parts twice yield

00, (b) = k) + ), /R Vyu? dx. (19)

Upon substituting v/, (b) = —6k, into the last equality, we derive

= 62+1/Vu dx. (20)

The next statement will allow us to construct the asymptotics of k.

Proposition 2. Assume that [ Vdx =0and g € sz,loc(R>' Then

i [ Vagdx = g/(0) [ xV(x)dx +o(e;?)
R R
aswy — oo.

Proof. Recall we are assuming suppV C Z = (—b,b) and hence supp V(a, -) lies within the

small interval 7 = (— %, a—) Then we deduce

w [ Vagdr=a} [ Viex)s() dx
= [ VORGE)dt = my [ V()(3(0) + /(00 + B() at
/ItV dt+ocA/IV(t)ﬁ(é)dt,

where B(x) = [; (x —s)g"(s) ds. Since §"" € Ly(Z), we have

g @)l ds

Hence |B(55)] < c|t]>/2a;3/% for t € T, which completes the proof. O

B(x)| =

(= s)g" (o) s

< |1

< 18" |y zy 122
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Let us apply the proposition to the integral in the right-hand side of (20):

ky = _% /va(x) dx —|—o((x):1/2) asA — 0. (21)

Hence k) has a finite limitas A — 0 and the inequality in (2) ensures that k) and w, are positive
for A small enough.

As in the proof of Lemma 3, the remainder ry = (H, + w%)lp,\ is given by (14), provided
|x| > b, and therefore it has the same order of smallness as a7 , in (18). We next have for x € 7

Ty = <—dd—; +U+ AV, +w/2\) <u+%v)\—|—2—22w)\>
A
= (—u" +Uu) + %(—’()X + Uvy +a)Vyu) + i‘—%(—w% + Uw) + a)Vy0,) (22)
3
+ Q—AVAZU)\ + (,(_)/Z\ll))L = A3V(£XA -)ZU)\ + (,(_)/Z\ll))L
Proposition 3. Ifv, and w, are solutions of (16) and (17) respectively, then
”v/\”cl(I) < iy, Hw/\Hcl(I) < CZOC%\.
The constants c; do not depend on A.

Proof. Let u; be the solution of —y” + Uy = 0 such that uy(x) = x+ b for x < —b. This
solution is linearly independent with u. It is easy to check that

vp(x) = kaup(x) +ay /xb K(x,s)Vy(s)u(s)ds,

_a/\

where K(x,s) = u(s)ui(x) — u(x)ui(s). Then

‘/be(x,s)VA(s)u(s)ds

< “A/ |K(x,8)| [V (ays)||u(s)|ds < cloc,\/ ds < ¢y,
I)\ I/\

for all x € 7 and therefore we estimate

X
max |0, (x)| < |ky| max uq(x)| + ay / ,
x€l x€l —ar

K(x,s)Vy(s)u(s)ds| < ciay.

We similarly obtain the bound maxyc7 [¢)) (x)| < c1a,, since

04 () = ks (1) + [, Kels)Va(s)u(s) s

N

We also apply the estimates above to the solution
X
wy(x) = ay /_i K(x,s)Vy(s)vp(s)ds
of (17) and derive |w) (x)| < ca3 for all x € Z. Finally, we deduce

A < e [ Ke(9)l [Va(s)] foa(s)] ds < cod.
A
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Returning now to (18) and (22), we have the bounds

101 < c1A?a3 % ([oa ()] + [w) (b)] + Ay Hwa (b)]) < 20,

IV (ar-)wallt, o) = /I |V (ax -)wa [? dx < 0306%/I dx < cqaf,
A A

in view of Proposition 3. Therefore ||, || < c4(A% + )\30&/ %) < ¢5A?, by (12) and the assumption
ay =0(A71/3)as A — 0. Recalling the definition of ¢, and estimate (13), we conclude

1(Hy + @)l = [oall 7 Hirall < cowl/?A% < cr}A1/2a3/2,

where A1/ eri/ 2 tends to zero. Therefore the pair (—Azk%\rx;z, ¢)) is a quasimode of H, with
accuracy o(w?) and so H, possesses a small negative eigenvalue ¢) with the asymptotics

—A%a; (k2 +0(1)) as A — 0, where k), is given by (21).

6 Proof of Theorem 4

In the case when a, goes to zero, the support of V) liesin 7, = (—brx)fl, brx)fl) and extends
to the whole line as A — 0. Therefore we will look for the approximation to an eigenfunction
of H, in the form

gr(x by ) for x < —ba;!,
hA(x) = { u(x) + Aay v (x) for [x| < baj?,
g\ e @r(x=buh) 4 aap(x — brx)fl) for x > boc)fl,

where w) = Aw,k,. Set ¢ = ¢, /||¢a||. Here, as usual, u is the normalized half-bound state
of Hy; v, solves the problems

—o" + Uv = =V (ayx)u(x), o(=bay ') =0, v'(=bayt) =k, (23)
We assume ag, = 6 + )wc,\v,\(b(x):l), a )\ = Azrx%\v)‘(b(x):l) and k) = —Qflvg(b(x):l), which en-

sures that i) and ¢, have no jump discontinuities at x = j:boc)fl and therefore i, € szl oc(R).
To prove that ¢, € dom H,, we must check that k, is positive. From (23) we as above derive

00 (bay ') — k) = / V (px)u?(x) dx.
R
Combine this equality and v/, (ba; ') = —0k,, to deduce
ky = —L/ V (px)u?(x) dx (24)
Proposition 4. Under the assumptions of Theorem 4,

/ Vi(wy )u?dx = V(O)/ (u> —@%)dx +o(ny) asay — 0,
R R

where © is given by (3).
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Proof. Recalling the fact that u(x) = 1 for x < —b and u(x) = 0 for x > b, we have

1
2 - 2 (L
/H{V(rx)\x)u (x)dx = o IRV(t‘)u (0(/\) dt
1 bt)é/\ —bDCA —+00
= (/ V(t)u? (é) dt + / V(t)dt+62/V(t)dt).
—ba), —o ba,
Now condition [ Vdx + 6% [ Vdx = 0implies
*le}L —+o0 0 le}L
/ V(t)dt + 6° / V(t)dt = — / V(1) dt—HZ/V(t)dt,
—o00 ba), —bay 0

and we thereby obtain

/IR V(o) (x) dx = :—A (:/: v (&) dt - ;ZA V(t)dt — 6 Z/MV(t) dt)
P t 1 t
2 T () -o0) =L v () -0

since u(a; ! 1) — © has a compact support lying within [—ba,, b, ]. Thus

/H{V(oc,\x)uz(x) dx = 1 IRV(t) <u2 <M> @2( )) dt

L2}
= V(O)/ (u> —@%)dx +o(ny) asay — 0,
R

because ® = ©(a;, '), V is continuous at x = 0 and a; ' (uz( ) — 0%yt )) is a J-like

sequence. Recall that e ™1 [, w (¥) (x) dx — 1(0) [ wdx, as € goes to zero, for any w € L;(RR)
and 7 € C(R). O

In view of Proposition 4, we then obtain from (24) the asymptotic formula

ky = — 62—|—1 —©%)dx +o(ay) asA — 0.

Consequently, k) remains bounded as A — 0 and is positive for small A, by (4).
Proposition 5. There exists a constant C such that
[or (x)] < Cay?
forallx € (—=b/a),b/uy).
Proof. The solution of (23) can be written as

OkA 1 (x) + ey (x) + /xb/“AK(x,s)V(oc)\s)u(s) ds,

o (x) =
X\
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where 17 and K are the same as in the proof of Proposition 3. Since
()] < Cilfx| +1),  [K(x,8)] < Coffx] +[s] +1)

forall x,s € R and k, is bounded on A, we derive

X
o2 (x)] < e + ea(|x] + 1) + 3 / (Jx| + |s| + 1) ds < Cay?,
—b/DC)l

provided x belongs to (—b/ay,b/ay). O

As before, in Sections 4 and 5, we must estimate the remainder v, = (H) + w%)w A having
the form

A2V (apyx)o) (x) + @iy (x) for |x| < %,
ra(x) = —Azoc%\v)\(%)(p”(x — %) — wip(x — %)) for % <x< % +1,
0 otherwise.

Applying Proposition 5, we obtain that

—-1/2 —-1/2 —
lpall > ciw 2, 19ally ) < c2ay % IV (ea-)valliy () < csa™/2,

and hence recalling condition A}/ *a; ! — 0 gives us

Al < A2Q3 NV (r)or | Lyzy) + @30l Lz, + A2QE [oa (ba )] 10" — wipllLy01) < caray /2

Finally we have
I(Hy + @)l = [gal Hirall < eswy/?A%a Y2 < cewd A 22,

where A1/ Za)fz — 0as A — 0. Therefore (—A%a3k2, ¢, ) is a quasimode of H, with accuracy
o(w?). Existence of the quasimode ensures the existence of the eigenvalue e, = —w?3, where

w) = Ay <9‘2/(£>1 /lR(u2 — @?)dx +o(1)> as A — 0.

Remark 3. The proof of Theorem 1 is based on the norm resolvent convergence of Hamilto-
nians —dd—; + A72U(A1x) + v~ V(v lx). This convergence can be also proved for potentials
obeying

Ja+ihu@ldr <o, [ @+ DV <o

(see [25], where the case of &'-like potential has been treated) and therefore we can extend
the class of admissible potentials. This is also true in relation to the rest results of this paper,
because we can use the WKB-approximations of solutions as |x| — oo in place of the exponents
a,e*@\* in the structure of quasimodes.
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Y Wiif cTaTi BMBYaEMO IIOPOTOBY MOBEAIHKY BAACHMX 3HadeHb oneparopis lllpeanHrepa

d2

Hy = ——
A dx2

+ U+ /\lX,\V((X,\'),

ae U ta V — aiticHO3HaUHI OTEHITiaAM 3 KOMITAKTHUMY HOCISIMI, a AOAATHA MIOCAIAOBHICTD &), Ma€
ckiHueHHY ab0 HeCcKiHUeHHY I'paHMITIO, KOAM AOAATHMIT TapaMeTp A IpsMye AO HyAsl. Mu BcTaHO-
BIAM YMOBM Ha TIOTeHIIiaAM, IIPM SIKMX iCHY€ BiA'€MHe BAacHe 3HaueHHs onepartopa H), ske mpu
A — 0 HOrAMHAETHCSI HMKHBOIO MeXeI0 HellepepPBHOTO CIIeKTPY. AASL KIABKOX BUIIAAKIB TpaHUYHOL
TIOBeATHKM TIOCAIAOBHOCTI &) TIO6YAOBaHi acCMMITTOTHYHI (POPMYAU AASI TAKVMX BAACHMX 3HAUeHb.

Kntouosi crnosa i ppasu: orHOBUMipHMIL omtepaTop IllpeanHTepa, IOporose 3HaUeHHS CTaAOl B3ae-
MOAIi, Bia'eMHMIT 3B'SI3HMI CTaH, Pe30HAHC HyAbOBOI eHepril, HalliB3B sI3HIMIA CTaH, é'-moTentiian, To-
YKOBa B3a€EMOAISI.



