PHYSICS AND CHEMISTRY OF SOLID STATE

V. 22, No. 2 (2021) pp. 248-254

Section: Physics

DOI: 10.15330/pcss.22.2.248-254

Vasyl Stefanyk Precarpathian National University

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 22, № 2 (2021) С. 248-254

Фізико-математичні науки

УДК 546.882

ISSN 1729-4428

М. Коник¹, Л. Ромака¹, Ю. Стадник¹, В.В. Ромака², В. Пашкевич³ Фазові рівноваги в системі Gd–Cr–Ge при 1070 К

¹Львівський національний університет ім. І.Франка, Львів, Україна, <u>mariya.konyk@lnu.edu.ua</u> ²Інститут досліджень твердого тіла, Дрезден, Німеччина, <u>vromaka@gmail.com</u> ³Національний університет "Львівська політехніка", Львів, Україна, <u>volodymyr.z.pashkevych@lpnu.ua</u>

Методами рентгенофазового, рентгеноструктурного і рентгеноспектрального аналізів досліджено взаємодію компонентів та побудовано ізотермічний переріз діаграми стану потрійної системи Gd–Cr–Ge при 1070 К у повному концентраційному інтервалі. У системі Gd–Cr–Ge за температури відпалювання утворюються три тернарні сполуки: Gd₁₁₇Cr₅₂Ge₁₁₂ (структурний тип Tb₁₁₇Fe₅₂Ge₁₁₂, просторова група *Fm-3m*, символ Пірсона *cF*1124, *a* = 2,8971(6) нм), GdCr₆Ge₆ (структурний тип SmMn₆Sn₆, просторова група *P6/mmm*, символ Пірсона *hP*16, *a* = 0,51797(2), *c* = 0,82901(4) нм) та GdCr_{1-x}Ge₂, для якої рентгенівським дифракційним методом порошку проведено уточнення кристалічної структури (структурний тип CeNiSi₂, просторова група *Cmcm*, символ Пірсона *oS*16, *a* = 0,41569(1), *b* = 1,60895(6), *c* = 0,40318(1) нм, *R*_{Bragg} = 0,0413, *R*_p = 0,0510). Для сполуки GdCr_{1-x}Ge₂ визначено область гомогенності (*x* = 0.73 – 0,69).

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги, кристалічна структура.

Подано до редакції 16.02.2021; прийнято до друку 26.04.2021.

Вступ

Експериментальні дані з дослідження взаємодії компонентів у металічних системах дозволяють отримати важливу інформацію стосовно утворення, температурної і концентраційної стабільності та кристалічної структури проміжних фаз для пошуку нових матеріалів із цінними властивостями. Серед потрійних систем R-M-Ge (R – рідкісноземельний метал, М - *d*-елемент) діаграми фазових рівноваг систем за участю рідкісноземельних металів, хрому та германію побудовані для R = Nd, Y i Er [1-3], для інших елементів досліджували структурні та фізичні характеристики окремих тернарних сполук. Згідно літературних відомостей для рідкісноземельних металів підгрупи ітрію встановлено існування тернарних сполук RCr_6Ge_6 (R = Y, Tb-Er) [4, 5], які належать до структурного типу HfFe6Ge6 (або MgFe₆Ge₆). Відомості про сполуку GdCr₆Ge₆ приведені в праці [6], автори якої вивчали твердий розчин GdMn_{6-x}Cr_xGe₆ зі структурою типу HfFe₆Ge₆. Нейтронографічні дослідження сполуки TbCr₆Ge₆ засвідчили, що структура германіду є частково розупорядкованою похідною структурного типу HfFe₆Ge₆ [7]. Аналіз літературних даних засвідчує, що германіди RCr_xGe₂ зі структурою типу CeNiSi₂ утворюються з рідкісноземельними металами Sm, Y, Gd-Er [8, 9] і характеризуються дефектністю в кристалографічній позиції перехідного металу. Зразки відповідних складів для обох серій сполук (RCr₆Ge₆, RCr_xGe₂) отримані за температури відпалювання 1070 К. При дослідженні системи У-Cr-Ge при 870 К тернарних сполук у системі не виявлено [10], а за результатами подальших досліджень системи за температури 1070 K встановлено існування двох тернарних сполук YCr₆Ge₆ (структурний тип HfFe₆Ge₆) i YCr_{0.23}Ge₂ (структурний тип CeNiSi₂) [1]. Згідно результатів диференціального термічного аналізу германіди YCr₆Ge₆ і ErCr₆Ge₆ існують в доволі широкому температурному інтервалі до ~1120 К [1, 3]. Для рідкісноземельних металів, де R = La, Ce, Pr, Nd, Sm, реалізуються сполуки стехіометричного складу RCrGe3 зі структурою перовскіту BaNiO3 [11], про

Таблиця 1

Дант ЕДРСТРФА для окремих сплавів системи ба-ст-бе				
Вихідний склад сплаву, ат.%	Склад експериментальний, ат.%			
	ЕДРС	РФА		
Gd ₉ Cr _{43.5} Ge _{47.5}	Gd _{10.26} Cr _{43.15} Ge _{46.59}	$Gd_{10.7}Cr_{42.9}Ge_{46.4}$		
$Gd_{33}Cr_7Ge_{60}$	Gd _{34.87} Cr _{8.58} Ge _{56.55}	$Gd_{32.6}Cr_{7.4}Ge_{60}$		
$Gd_{62.5}Cr_{10}Ge_{27.5}$	Gd _{63.58} Cr _{9.3} Ge _{27.12}	Gd _{60.5} Cr _{11.8} Ge _{27.7}		
$Gd_{25}Cr_{32}Ge_{43}$	Gd _{25.21} Cr _{33.47} Ge _{41.32}	$Gd_{26.3}Cr_{32.0}Ge_{41.7}$		
$Gd_{45}Cr_{10}Ge_{45}$	Gd _{43.89} Cr _{11.23} Ge _{44.88}	$Gd_{44.6}Cr_{10.3}Ge_{45.1}$		
$Gd_{45}Cr_{20}Ge_{35}$	$Gd_{43.98}Cr_{21.05}Ge_{34.97}$	$Gd_{44.4}Cr_{20.7}Ge_{34.9}$		

Iані ЕДРС і РФА для окремих сплавів системи Gd–Cr–Ge

існування сполук $Nd_{117}Cr_{52}Ge_{112}$ і $Sm_{117}Cr_{52}Ge_{112}$ з кубічною структурою типу $Tb_{117}Cr_{52}Ge_{112}$ повідомляється в працях [2, 12].

В цій праці ми подаємо експериментальні результати дослідження взаємодії компонентів у системі Gd–Cr–Ge за температури 1070 К та структурні характеристики тернарних сполук.

I. Методики дослідження

Для побудови діаграми фазових рівноваг системи Gd-Cr-Ge виготовляли зразки методом електродугового сплавляння шихти вихідних компонентів (вміст основного компонента не нижчий за 99,9 мас. %). Втрати шихти під час плавлення контролювали повторним зважуванням і, якщо маса зразка не відхилялась від маси шихти більш ніж на 1-2%, склад сплаву вважали однаковим щодо шихти. Для надання сплавам рівноважного стану проводили гомогенізувальне відпалювання при 1070 К впродовж 700 год з подальшим гартуванням у холодній воді без попереднього розбивання ампул. Рентгенофазовий аналіз виконували за зразків. дифрактограмами одержаних на дифрактометрі ДРОН-4.0 (FeK_α-випромінювання). Елементний синтезованих склад зразків контролювали допомогою 38 рентгенофлуоресцентної спектроскопії (аналізатор ElvaX Pro). Мікроструктуру окремих сплавів досліджували за допомогою електронного мікроскопа TESKAN VEGA 3 LMU, який оснащений рентгенівським аналізатором з енергодисперсійною спектроскопією (ЕДРС). Розрахунки та індексування порошкових дифрактограм виконували З використанням пакета програм WinCSD [13] періодів ґратки). Визначення (уточнення кристалічної структури сполук проводили методом порошку за експериментальними масивами даних, отриманих у кроковому режимі зйомки за кімнатної температури на автоматичному дифрактометрі STOE STADI Р (Си Ка1-випромінювання, графітовий монохроматор). Уточнювали координати атомів, коефіцієнти заповнення правильних систем точок, ізотропні температурні поправки та розраховували теоретичні інтенсивності за допомогою комплексу програми FullProf Suite [14], використовуючи алгоритм розрахунку Рітвельда [15].

II. Результати і обговорення

побудови діаграми фазових рівноваг Лля потрійної системи Gd-Cr-Ge виготовлено 33 потрійних і 12 подвійних сплавів, гомогенізованих при температурі 1070 К впродовж 700 годин. Контроль сплавів після відпалу проводили методами рентгенівського фазового, рентгеноспектрального (ЕДРС) та рентгенофлуоресцентного (РФА) аналізів. В табл. 1, як приклад, приведено результати елементного складу для окремих зразків за даними ЕДРС і РФА, які задовільно узгоджуються з вихідними складами сплавів. За результатами рентгенофазового і рентгеноспектрального аналізів побудовано діаграму фазових рівноваг системи Gd-Cr-Ge при 1070 К (рис. 1). Результати ЕДРС аналізу окремих потрійних сплавів приведені в таблиці 2, фотографії мікроструктур деяких сплавів показані на рис. 2.

Рис. 1. Ізотермічний переріз діаграми стану системи Gd–Cr–Ge при 1070 К.

Таблиця 2

Номінальний склад, ат. % Фаза		Структурний	Періоди гратки, нм			Дані ЕДРС, ат. %		
		Imi	а	b	С	Gd	Cr	Ge
$Gd_{20}Cr_{60}Ge_{20}$	Cr	Cr	0.4581(3)					
	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb ₁₁₇ Cr ₅₂ Ge ₁₁₂	2.8980(5)					
$Gd_{63}Cr_{10}Ge_{27}$	Gd ₅ Ge ₃	Mn ₅ Si ₃	0.8594(3)		0.6428(5)	66.73		33.27
	Cr	Cr	0.4580(4)				100.0	
	Gd	Mg	0.3678(4)		0.5858(5)	100.0		
Gd ₂₅ Cr ₃₂ Ge ₄₃	Cr ₃ Ge	Cr ₃ Si	0.4626(3)				74.18	25.82
	Gd ₃ Ge ₄	Er ₃ Ge ₄	0.4100(3)	1.0751(5)	1.4310(6)	56.64		43.36
Gd ₃₀ Cr ₃₅ Ge ₃₅	Cr ₃ Ge	Cr ₃ Si	0.4628(3)					
	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb117Cr52Ge112	2.898(5)					
$Gd_{50}Cr_{15}Ge_{35}$	Gd ₅ Ge ₃	Mn ₅ Si ₃	0.8594(3)		0.6429(4)	65.18	0.95	33.87
	Gd ₅ Ge ₄	Sm ₅ Ge ₄	0.7696(3)	1.4830(6)	0.7785(5)	55.32		44.68
	Cr	Cr	0.4581(4)				100.0	
Gd40Cr25Ge35	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb117Cr52Ge112	2.899(4)			43.47	17.33	39.20
	Gd ₅ Ge ₄	Sm ₅ Ge ₄	0.7695(5)	1.4828(6)	0.7784(5)	54.49		45.51
	Cr	Cr	0.4582(5)				100.0	
$Gd_{20}Cr_{40}Ge_{40}$	Cr ₃ Ge	Cr ₃ Si	0.4629(5)					
	GdGe _{1.5}	AlB ₂	0.3976(3)		0.4202(5)			
Gd10Cr45Ge45	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5177(3)		0.8288(5)	8.07	47.21	44.72
	Cr ₃ Ge	Cr ₃ Si	0.4631(4)				74.92	25.08
	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4157(4)	1.6088(6)	0.4030(5)	30.75	10.34	58.91
$Gd_{45}Cr_{10}Ge_{45}$	GdGe	TII	0.4320(3)	1.080(5)	0.3974(5)	49.78		50.22
	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb117Cr52Ge112	2.8991(5)			41.62	17.44	40.94
	Gd ₃ Ge ₄	Er ₃ Ge ₄	0.4101(4)	1.0749(6)	1.4311(6)	41.96		58.04
Gd ₅ Cr ₅₀ Ge ₄₅	CrGe	FeSi	0.4780(3)					
	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5176(3)		0.8289(6)			
	Gd ₁₁ Ge ₈	Gd ₁₁ Ge ₈	(сліди)					
Gd ₂₅ Cr ₂₅ Ge ₅₀	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4156(3)	1.6089(6)	0.4028(4)			
	Cr ₃ Ge	Cr ₃ Si	0.4630(5)					
	GdGe _{1.5}	AlB ₂	0.3976(4)		0.4201(3)			
Gd ₂₀ Cr ₂₅ Ge ₅₅	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5177(4)		0.8290(6)	8.20	46.25	45.55
	$GdCr_{1-x}Ge_2$	CeNiSi ₂	0.4160(4)	1.6088(6)	0.4031(4)	30.86	9.51	59.63
	Ge	С	0.5650(3)					100.0
Gd ₅ Cr ₃₅ Ge ₆₀	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5178(4)		0.8290(5)			
	Ge	С	0.5649(4)					
	$Cr_{11}Ge_{19}$	$Mn_{11}Si_{19}$	(сліди)					
Gd ₃₃ Cr ₇ Ge ₆₀	$GdCr_{1-x}Ge_2$	CeNiSi ₂	0.4159(3)	1.6073(6)	0.4029(4)	30.65	8.07	61.28
	GdGe _{1,5}	AlB ₂	0.3977(3)		0.4200(5)	40.26		59.74
Gd ₃₀ Cr ₅ Ge ₆₅	$GdCr_{1-x}Ge_2$	CeNiSi ₂	0.4159(3)	1.6074(5)	0.4030(4)			
	Ge	С	0.5650(3)					
	GdGe _{1.63}	ThSi ₂	(сліди)					

Дані ЕДРС і кристалографічні характеристики окремих сплавів системи Gd-Cr-Ge відпалених при 1070 К

У ході дослідження системи Gd-Cr-Ge відомості про подвійні системи Gd-Ge, Gd-Cr і Cr-Ge, які обмежують досліджувану потрійну систему, та дані відповідних бінарних структурні сполук використані з довідників [16, 17]. Згідно літературних відомостей у системі Gd-Cr [17] проміжних фаз не виявлено, що підтверджено в ході дослідження системи Gd-Cr-Ge. За результатами рентгенофазового і рентгеноспектрального аналізів зразки в потрійній області системи Gd5Ge3-Gd-Cr містять три фази в рівновазі – бінарну сполуку

Gd₅Ge₃, Gd i Cr (рис. 2,б). За температури відпалювання у подвійній системі Cr–Ge підтверджено існування бінарних сполук Cr₃Ge (CT Cr₃Si), Cr₁₁Ge₈ (CT Cr₁₁Ge₈), CrGe (CT FeSi) і Cr₁₁Ge₁₉ (CT Mn₁₁Si₁₉). Сполуку Cr₅Ge₃ зі структурою типу W₅Si₃ за температури дослідження ідентифікувати не вдалося. Згідно з рентгенофазовим аналізом зразок відповідного складу містив у рівновазі дві бінарні сполуки: Cr₃Ge і Cr₁₁Ge₈. Отриманий результат узгоджується з літературними відомостями [18], згідно яких сполука Cr₅Ge₃ існує в інтервалі високих температур 1269 - 1535 К. відповідних стехіометричних складів. Г e Д

Рис. 2. Фотографії мікроструктур сплавів системи Gd–Cr–Ge: a) $Gd_{10}Cr_{45}Ge_{45} - GdCr_6Ge_6$ (темна фаза); $GdCr_{1-x}Ge_2$ (світла фаза); Cr_3Ge (чорна фаза); б) $Gd_{63}Cr_{10}Ge_{27} - Gd_5Ge_3$ (сіра фаза); Cr (чорна фаза); Gd (світла фаза); B) $Gd_{50}Cr_{15}Ge_{35} - Gd_5Ge_3$ (сіра фаза); Gd_5Ge_4 (темносіра фаза); Cr (чорна фаза); r) $Gd_{45}Cr_{10}Ge_{45} - GdGe_4$ (світла фаза); $Gd_{117}Cr_{52}Ge_{112}$ (темносіра фаза); Gd_3Ge_4 (темна фаза); д) $Gd_{40}Cr_{25}Ge_{35} - Gd_5Ge_4$ (світла фаза); $Gd_{117}Cr_{52}Ge_{112}$ (темносіра фаза); e) $Gd_{20}Cr_{25}Ge_{55} - GdCr_{1-x}Ge_2$ (світла фаза); $GdCr_6Ge_6$ (темносіра фаза); Cr_3Ge (темна фаза); Cr_3Ge (темна фаза).

У подвійній системі Gd–Ge згідно з діаграмою стану [16] підтверджено існування бінарних сполук за використаної температури відпалювання: Gd₅Ge₃ (CT Mn₅Si₃), Gd₅Ge₄ (CT Sm₅Ge₄), GdGe (CT TII), GdGe_{1,5} (CT AlB₂), GdGe_{1,63} (CT ThSi₂) (рис. 1). Оскільки в літературних джерелах містяться відомості про сполуки Gd₃Ge₄ і Gd₁₁Ge₁₀ [19, 20], які відсутні на діаграмі стану системи Gd–Ge, в ході дослідження були додатково виготовлені зразки Рентгенофазовий аналіз виготовлених та відпалених при 1070 К сплавів засвідчив утворення сполук Gd₃Ge₄ (CT Er₃Ge₄) та Gd₁₁Ge₁₀ (CT Ho₁₁Ge₁₀) за вибраної температури дослідження.

За даними рентгеноспектрального аналізу розчинність третього компонента в бінарних сполуках систем Cr-Ge і Gd-Ge не перевищує 1 - 2 ат.% за умов дослідження.

Згідно проведеного аналізу експериментальних

даних в системі Gd-Cr-Ge при 1070 К утворюються тернарні сполуки, кристалографічні три характеристики яких приведені в табл. З. У ході дослідження при температурі 1070 К підтверджено існування сполук GdCr₆Ge₆ та GdCr_{1-x}Ge₂, а також

встановлено утворення нової сполуки у зразку складу дифрактограми $Gd_{40}Cr_{20}Ge_{40}$. Аналіз зразка Gd40Cr20Ge40 та розрахований період ґратки вказав на структурного належність сполуки до типу $Tb_{117}Fe_{52}Ge_{112}$. Утворення сполуки i склад Gd₁₁₇Cr₅₂Ge₁₁₂ підтверджено даними ЕДРС аналізу (рис. 2, г,д, табл. 2). За результатами структурних сполука GdCr₆Ge₆ належить досліджень ЛО структурного типу SmMn₆Sn₆, який є частково розупорядкованим варіантом структурного типу HfFe6Ge6. За даними нейтронографічних досліджень структурний тип SmMn₆Sn₆ з частковим розподілом атомів Tb і Gel у двох кристалографічних позиціях встановлений лля ізоструктурної сполуки i TbCr₆Ge₆ [7].

Для сполуки GdCr_{1-x}Ge₂ проведено уточнення кристалічної структури за масивом порошкових дифракційних даних зразка Gd₃₀Cr₁₀Ge₆₀ (рис. 3). Експериментальні умови одержання масиву дифракційних даних та результати розрахунку структури наведено табл. 4, координати, В

коефіцієнти заповнення позицій та ізотропні параметри коливання атомів - в табл. 5.

рентгенофазового Зa результатами рентгеноспектрального аналізів для германіду GdCr_{1-x}Ge₂ встановлено існування невеликої області гомогенності в межах вмісту Сг 0.27-0.31. Зміна періодів гратки приведена в табл. 3.

Порівняння дослідженої системи Gd-Cr-Ge з раніше вивченими {Nd, Y, Er}-Cr-Ge засвідчує, що система Gd-Cr-Ge за характером фазових рівноваг та кристалічною структурою тернарних сполук подібна до систем Y-Cr-Ge (1070 K) та Er-Cr-Ge (1070 K) [1, 3]. Для цих систем характерним є утворення сполук RCr₆Ge₆ (структурні типи HfFe₆Ge₆, SmMn₆Ge₆) і RCr_{1-x}Ge₂ зі структурою типу CeNiSi₂, для яких, як і для ізоструктурних сполук RM_{1-x}Ge₂ з іншими d-елементами (M = Mn, Fe, Co, Ni, Cu), властива дефектність по перехідному металу [21]. На відміну віл германідів RCr₆Ge₆, які утворюються З рідкісноземельними елементами підгрупи Ітрію, для РЗМ церієвої підгрупи Nd і Sm реалізуються сполуки $R_{117}Cr_{52}Ge_{112}$ кубічною структурою 3 типу Tb₁₁₇Fe₅₂Ge₁₁₂ [2, 12]. Згідно виконаних у нашій праці досліджень аналогічна сполука утворюється і в системі Gd-Cr-Ge. З огляду на невелику кількість тернарних сполук, які утворюються в досліджених

Таблиця 3

Кристалографічні характеристики сполук системи Gd–Cr–Ge						
Сполука	ПГ	СТ	Періоди ґратки, нм			
			а	b	С	
GdCr ₆ Ge ₆	P6/mmm	SmMn ₆ Sn ₆	0,51797(2)	-	0,82901(4)	
GdCr _{1-x} Ge ₂	Cman	CeNiSi ₂	0,41569(1)-	1,60895(6)-	0,40318(1)-	
	Cmem		0,41593(8)	1,60738(3)	0,40305(8)	
Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Fm-3m	Tb ₁₁₇ Fe ₅₂ Ge ₁₁₂	2,8971(6)	_	_	

Рис. 3. Спостережувана (кружки), розрахована (лінія) і різницева (внизу рисунка) дифрактограми сплаву Gd₃₀Cr₁₀Ge_{60.}

системах {Y, Gd, Er}-Cr-Ge, можна передбачити взаємодію компонентів і для систем з іншими рідкісноземельними металами, зокрема, тербієм, диспрозієм, гольмієм, для яких досліджені сполуки RCr₆Ge₆ і RCr_{1-x}Ge₂. Можна прогнозувати утворення

 $Gd_{117}Cr_{52}Ge_{112}$ з кубічною структурою типу Tb_{117}Fe_{52}Ge_{112}. Структурні дослідження сполуки GdCr_6Ge_6 засвідчили її приналежність до структурного типу SmMn_6Sn_6, який є частково розупорядкованим варіантом структурного типу

Таблиця 4

Експериментальні умови одержання масиву дифракційних даних та результати уточнення структури сполуки GdCr_{0.31}Ge₂ (CT CeNiSi₂; ПГ *Cmcm*; Z = 4)

Склад зразка	$Gd_{30}Cr_{10}Ge_{60}$		
Уточнений склад сполуки	$GdCr_{0.31(5)}Ge_2$		
Символ Пірсона	oS16		
Параметр комірки: а,нм	0,415699(1)		
<i>b</i> ,нм	1,60895(6)		
С, НМ	0,40318(1)		
Об'єм комірки V, нм ³	0,2696(6)		
Кількість атомів у комірці	12,92		
Густина D_x , г см ⁻³	7,847		
Дифрактометр порошковий	STOE STADI P		
Випромінювання, λ	Cu K_{α} , 1,54056		
Метод сканування	$\theta 2\theta$		
Інтервал 2 <i>θ</i> , °	6–120		
Крок сканування, час сканування в точці, с	0,015/220		
Спосіб уточнення	Повнопрофільний		
Параметр змішування, η	0,349(9)		
Параметри профілю: U	0,142(4)		
V	0,006(20)		
W	0,015(4)		
Параметри асиметрії піків: А1	0,081(7)		
A2	0,038(2)		
Фактори достовірності: <i>R</i> _{Bragg}	0,0413		
$R_{ m f}$	0,0510		
χ^2	1,16		

Таблиця 5

Координати та ізотропні параметри коливання атомів у структурі сполуки GdCr_{0.31}Ge₂

Атом	ПСТ	x	У	z	КЗП	B_{iso} , Å ²
Gd	4 <i>c</i>	0	0,3969(4)	1/4	1	0,29(1)
Cr	4 <i>c</i>	0	0,1984(9)	1/4	0,31(5)	1,52(1)
Ge1	4 <i>c</i>	0	0,0506(7)	1/4	1	1,19(3)
Ge2	4 <i>c</i>	0	0,7514(6)	1/4	1	1,79(3)

ізоструктурних сполук RCr_6Ge_6 і $RCr_{1-x}Ge_2$ також з Tm, Yb і Lu, для яких на даний час відомості стосовно тернарних сполук в літературі відсутні або обмежені.

НfFe₆Ge₆. Встановлено, що сполука GdCr₆Ge₆ характеризується точковим складом, а для сполуки GdCr_{1-x}Ge₂ зі структурою типу CeNiSi₂ властива невелика область гомогенності, яка обмежена складами GdCr_{0.27}Ge₂ і GdCr_{0.31}Ge₂.

Висновки

За результатами експериментального дослідження взаємодії компонентів у потрійній системі Gd–Cr–Ge в повному інтервалі концентрацій за температури 1070 К підтверджено утворення тернарних германідів GdCr₆Ge₆ і GdCr_{1-x}Ge₂ та визначено утворення нової тернарної сполуки Коник М. - к.х.н., доцент; Ромака Л. - к.х.н., провідний науковий співробітник; Стадник Ю. - к.х.н., провідний науковий співробітник; Ромака В. - д.т.н., к.х.н., доктор фізики; Пашкевич В. - к.т.н., доцент.

- M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, Visnyk Lviv. Univ. Ser. Chem. 60(1), 38 (2019) (<u>https://doi.org/10.30970/vch.6001.038</u>).
- [2] P.S. Salamakha, Y.M. Prots, J. Alloys Compd. 215, 51 (1994) (<u>https://doi.org/10.1016/0925-8388(94)90817-6</u>).
- [3] M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R Serkiz, A. Horyn, Phys. Chem. Solid State 20(4), 376 (2019) (<u>https://doi.org/10.15330/pcss.20.4.376-383</u>).
- [4] J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, J. Alloys Compd. 77, 205 (1994) (<u>https://doi.org/10.1016/0925-8388(94)90769-2</u>).
- P. Schobinger-Papamantelljsa, J. Rodriguez-Carvajalb, K.H.J. Buschow, J. Alloys Compd. 92, 256 (1997) (<u>https://doi.org/S0925-8388(96)03109-X</u>).
- [6] F.M. Mulder, R.C. Thiel, J.H.V.J. Brabers, R.F. de Boer, K.H.J. Buschow, J. Alloys Compd. 198, L1 (1993) (https://doi.org/10.1016/0925-8388(93)90130-F).
- [7] P. Schobinger-Papamantellos, J. Rodríguez-Carvajal, K.H.J. Buschow, J. Alloys Compd. 255, 67 (1997) (<u>https://doi.org/10.1016/S0925-8388(96)02872-1</u>).
- [8] H. Bie, A. Tkachuk, A. Mar, J. Solid State Chemistry 182(1), 122 (2009) (<u>https://doi.org/10.1016/j.jssc.2008.10.013</u>).
- [9] A. Gil, D. Kaczorowski, B. Penc, A. Hoser, A. Szytula, J. Solid State Chem. 184(2), 227 (2011) (<u>https://doi.org/10.1016/j.jssc.2010.10.026/</u>).
- [10] O.I. Bodak, E.I. Gladyshevsky, Ternary systems containing rare earth metals (Vyshcha shkola, Lvov, 1985) (in Russian).
- [11] H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, J. Mater. Chem. 19(18), 4613 (2007) (<u>https://doi.org/10.1021/cm0727</u>+).
- [12] A.V. Morozkin, Y.D. Seropegin, V.K. Portnov, I.A. Sviridov, A.V. Leonov, Mater. Res. Bull. 33, 903 (1998) (<u>https://doi.org/10.1016/S0025-5408(98)00051-8</u>).
- [13] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Cryst. 47, 803 (2014) (<u>https://doi.org/10.1107/S1600576714001058</u>).
- [14] J. Rodriguez-Carvajal, Recent developments of the program FullProf. Commission on Powder Diffraction, IUCr Newsletter. 26, 12 (2001).
- [15] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65 (1969) (<u>https://doi.org/10.1107/S002188986900656X</u>).
- [16] T.B. Massalski, in: Binary Alloy Phase Diagrams (ASM, Metals Park, Ohio (1990).
- [17] H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, (Materials Park (OH): American Society for Metals, 2000).
- [18] I. Jandl, K.W. Richter, J. Alloys Compd. L6, 500 (2010) (<u>https://doi.org/10.1016/j.jallcom.2010.03.200</u>).
- [19] Y.S. Pukas, R.E. Gladyshevskii, Phys. Chem. Solid State 8, 347 (2007).
- [20] A.G. Tharp, G.S. Smith, Q.C. Johnson, Acta Crystallogr. 20, 583 (1966) (<u>https://doi.org/10.1107/S0365110X6600129</u>4).
- [21] V.K. Pecharsky, O.Ya. Mruz, M.B. Konyk, P.S. Salamakha, P.K. Starodub, M.F. Fedyna, O.I. Bodak, J. Struct. Chem. 30(5), 96 (1989) (in Russian).

M. Konyk¹, L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka², V. Pashkevych³

Phase Equilibria in The Gd–Cr–Ge System at 1070 K

¹Ivan Franko L'viv National University, L'viv, Ukraine, <u>mariya.konyk@lnu.edu.ua</u> ²Institute for Solid State Research, Dresden, Germany, <u>vromaka@gmail.com</u> ³Lviv Polytechnic National University, Lviv, Ukraine, <u>volodymyr.z.pashkevych@lpnu.ua</u>

The isothermal section of the phase diagram of the Gd–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. Three ternary compounds are realized in the Gd–Cr–Ge system at the temperature of annealing: Gd₁₁₇Cr₅₂Ge₁₁₂ (Tb₁₁₇Fe₅₂Ge₁₁₂ structure type, space group *Fm*-3*m*, Pearson symbol *cF*1124, *a* = 2.8971(6) nm), GdCr₆Ge₆ (SmMn₆Sn₆ structure type, space group *P6/mmm*, Pearson symbol *hP*16, *a* = 0.51797(2), *c* = 0.82901(4) nm) and GdCr_{1-x}Ge₂ (CeNiSi₂ structure type, space group *Cmcm*, Pearson symbol *oS*16, *a* = 0.41569(1)-0.41593(8), *b* = 1.60895(6)-1.60738(3), *c* = 0.40318(1)-0.40305(8) nm). For the GdCr_{1-x}Ge₂ compound the homogeneity range was determined (*x* = 0.73 - 0.69).

Keywords: intermetallics; ternary system; phase equilibria; crystal structure.