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The purpose of this paper is to present closed forms for various types of infinite series
involving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments. To
prove our results, we will apply some conventional arguments and combine the Binet formulas
for these sequences with generating functions involving the Riemann zeta function and some
known series evaluations. Among the results derived in this paper, we will establish that

∞∑
k=1

(ζ(2k + 1)− 1)F2k =
1

2
,

∞∑
k=1

(ζ(2k + 1)− 1)
L2k+1

2k + 1
= 1− γ,

where γ is the familiar Euler-Mascheroni constant.

1. Motivation and introduction. This paper is devoted to combine two very popular and
important mathematical objects: the Riemann zeta function and Fibonacci numbers. Both
objects have been studied intensively and are well understood but identities connecting
them are not documented in the mathematical literature. This is somewhat unexpected and
surprising. In this article, we attempt to fill this gap. More precisely, we will study some
classes of infinite series involving these two famous mathematical objects. Using generating
functions combined with some fairly routine arguments, we will be able to express the series
in closed form. Surprisingly, in most cases the infinite series will possess simple analytical
expressions, many of them involving trigonometric functions.

Recall that the Riemann zeta function ζ(s), s ∈ C, is defined by [1]

ζ(s) =
∞∑
k=1

1

ks
, Re(s) > 1.

The analytical continuation to all s ∈ C with Re(s) > 0, s ̸= 1, is given by

ζ(s) = (1− 21−s)−1

∞∑
k=1

(−1)k+1

ks
.

The evaluation of ζ(s) at integer arguments is an old problem that still challenges the
mathematical community. For even positive integer arguments this problem was completely
solved by Euler showing that

ζ(2n) = (−1)n+1 (2π)
2n

2(2n)!
B2n,
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where Bn are the Bernoulli numbers [2]. For odd integer arguments, the problem is still open.
Much more information about ζ(s) is contained in the textbooks [4, 10], among others.

On the other hand, the Fibonacci number sequence is one of the most famous integer
sequences in the mathematical world. The Fibonacci numbers Fn and the companion sequen-
ce of Lucas numbers Ln are defined for n ≥ 0 as Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln

with initial conditions F0 = 0, F1 = 1, L0 = 2 and L1 = 1, respectively. The Binet formulas
are given by

Fn =
αn − βn

α− β
, Ln = αn + βn,

where α is the golden ratio, i.e., α = 1+
√
5

2
and β = − 1

α
= 1−

√
5

2
. The sequences (Fn)n≥0 and

(Ln)n≥0 possess many interesting properties and appear in mathematical branches such as
combinatorics and graph theory. See [8] for more details. They are indexed in the On-Line
Encyclopedia of Integer Sequences [11] with entries A000045 and A000032, respectively.

It is well known that every real number has representation of the form
∑∞

k=0 ζ(k)ak with
(ak)k≥0 rational [3]. We focus on the cases where ak is a some function of Fk or Lk. Infinite
series evaluations involving Fibonacci (Lucas) numbers and the zeta function are rare. Very
recently, the following evaluations involving the Riemann zeta function at positive even
integer argument and scaled even Fibonacci (Lucas) numbers were stated in [5]:

∞∑
k=1

ζ(2k)
F2k

5k
=

π

2
√
5
tan

π

2
√
5
,

∞∑
k=1

ζ(2k)
L2k

5k
=

π

2
√
5
tan

π

2
√
5
+ 1.

A still more appealing identity involving ζ(s) at odd integer argument and Fibonacci
numbers comes as another problem proposal from [6]:

∞∑
k=1

ζ(2k + 1)
F2k

5k
=

1

2
. (1)

Interestingly, the Lucas counterpart does not possess such a nice structure:
∞∑
k=1

ζ(2k + 1)
L2k

5k
=

3

2
− 2

∞∑
n=1

1

n(5n2 − 5n+ 1)(5n2 + 5n+ 1)
.

A few more such relations can be found in [7].
The goal of this article is to continue the research in this direction and to present more

closed forms for some types of infinite series involving Fibonacci (Lucas) numbers and the
Riemann zeta function. To prove the results, we will mainly work with generating functions
and some series evaluations. In addition, in some of our proofs we will apply properties of
the digamma function ψ(z), z ∈ C. Recall that ψ(z) is the first logarithmic derivative of the
gamma function Γ(z) (the Euler integral of the second kind) [1], i.e.,

ψ(z) = (ln Γ(z))′ =
Γ′(z)

Γ(z)
.

The digamma function possesses the following properties:

ψ(z + 1) = ψ(z) +
1

z
, (2)

ψ(z + 1) = −γ +
∞∑
n=1

( 1
n
− 1

n+ z

)
, z ̸= −1,−2, . . . , (3)

and the reflection property
ψ(1− z)− ψ(z) = π cotπz,
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where γ is the Euler-Mascheroni constant given by

γ = lim
n→∞

( n∑
k=1

1

k
− lnn

)
= 0, 5772156649 . . .

These properties will be employed in some of the proofs below.

2. Main results. Our first result are the following evaluations involving the Riemann zeta
function at even integer arguments and Fibonacci (Lucas) numbers.

Theorem 1. For m ≥ 0, we have
∞∑
k=1

(ζ(2k)− 1)F2k+m−1 =
π

2
√
5
tan

√
5π

2
Lm +

Fm+2

2
, (4)

∞∑
k=1

(ζ(2k)− 1)L2k+m−1 =

√
5π

2
tan

√
5π

2
Fm +

Lm+2

2
. (5)

Proof. From [10, p. 281] we know that
∞∑
k=1

(ζ(2k)− 1)z2k−1 = −π
2
cotπz +

3z2 − 1

2z(z2 − 1)
, |z| < 2.

This gives with z = α
∞∑
k=1

(ζ(2k)− 1)α2k−1 = −π
2
cotπα +

α2

2
,

where we have used that 3α+ 2 = α4 and α2 = α+ 1. Hence,
∞∑
k=1

(ζ(2k)− 1)α2k+m−1 = −π
2
αm cotπα +

αm+2

2
.

In the same way, we get
∞∑
k=1

(ζ(2k)− 1)β2k+m−1 = −π
2
βm cotπβ +

βm+2

2
.

Combining these equations according to the Binet formula and making use of the fact that
cot(π/2− x) = tanx we obtain

∞∑
k=1

(ζ(2k)− 1)F2k+m−1 =
π

2
√
5

(
βm cotπβ − αm cotπα

)
+
Fm+2

2
=

=
π

2
√
5

(
βm tan

√
5π

2
+ αm tan

√
5π

2

)
+
Fm+2

2

and the proof of (4) is completed. The identity (5) is proved similarly and omitted.

Explicit examples for m = 0 and m = 1 are
∞∑
k=1

(ζ(2k)− 1)F2k−1 =
π√
5
tan

√
5π

2
+

1

2
,

∞∑
k=1

(ζ(2k)− 1)L2k−1 =
3

2
,

∞∑
k=1

(ζ(2k)− 1)F2k =
π

2
√
5
tan

√
5π

2
+ 1,

∞∑
k=1

(ζ(2k)− 1)L2k =

√
5π

2
tan

√
5π

2
+ 2.

Remark 1. We point out that instead of proving (5) directly (as we did implicitly), it can
also be deduced from (4) using Fibonacci-Lucas relations 5Fn = Ln+1 + Ln−1 and Ln =
Fn+1 + Fn−1.



118 R. FRONTCZAK, T. GOY

A proof comparable to the one given for Theorem 1 yields the following series:
∞∑
k=1

ζ(2k)− 1

n2k−1
F2k−1 =

1√
5
·

π sin π
√
5

n

cos π
√
5

n
− cos π

n

+
2n(n4 − 5n2 + 3)

(2n2 − 3 +
√
5)(2n2 − 3−

√
5)
,

∞∑
k=1

ζ(2k)− 1

n2k−1
L2k−1 =

π sin π
n

cos π
n
− cos π

√
5

n

− 2n(n4 − n2 + 3)

(2n2 − 3 +
√
5)(2n2 − 3−

√
5)
.

As could be expected, the formula including the odd zeta values is more involved and
possesses a semi-closed form.

Theorem 2. For m ≥ 0, we have
∞∑
k=1

(ζ(2k + 1)− 1)F2k+m =
Fm+1

2
+ Fm

(1
2
+
π

2
tan

√
5π

2
− ψ(α)− γ

)
, (6)

∞∑
k=1

(ζ(2k + 1)− 1)L2k+m =
Lm+1

2
+ Lm

(1
2
+
π

2
tan

√
5π

2
− ψ(α)− γ

)
. (7)

Proof. From [10, p. 280] we have the following generating function:
∞∑
k=1

(ζ(2k + 1)− 1)z2k = (1− γ)− 1

2

(
ψ(2 + z) + ψ(2− z)

)
, |z| < 2.

This relation combined with the Binet formula and 2− α = α−2 = β2, 2− β = α2 yields
∞∑
k=1

(ζ(2k + 1)− 1)F2k+m =

= (1− γ)Fm +
1

2
√
5

(
βmψ(β2 + 1)− αmψ(β2)

)
− 1

2
√
5

(
αmψ(α2 + 1)− βmψ(α2)

)
.

Now, we note that

βmψ(β2 + 1)− αmψ(β2) = Lm

(
ψ(β2 + 1)− ψ(β2)

)
− αmψ(β2 + 1) + βmψ(β2)

and

αmψ(α2 + 1)− βmψ(α2) = Lm

(
ψ(α2 + 1)− ψ(α2)

)
− βmψ(α2 + 1) + αmψ(α2).

Gathering terms and keeping in mind property (2) we arrive at
∞∑
k=1

(ζ(2k + 1)− 1)F2k+m = (1− γ)Fm +
Lm

2
+
S1 + S2

2
√
5

,

with S1 = βmψ(β2)− αmψ(α2), S2 = βmψ(α2 + 1)− αmψ(β2 + 1).
Next, we apply property (3) to get

S1 = γ
√
5Fm +

∞∑
n=1

(βm

n
− βm

n+ β
− αm

n
+

αm

n+ α

)
=

= γ
√
5Fm −

∞∑
n=1

(n− 1)
√
5Fm + n

√
5Fm−1

n(n+ α)(n+ β)
=

= γ
√
5Fm −

√
5Fm+1

∞∑
n=1

1

n2 + n− 1
+
√
5Fm

∞∑
n=1

1

n(n2 + n− 1)
.
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Similarly for S2,

S2 = γ
√
5Fm +

∞∑
n=1

−(3n+ 1)
√
5Fm + n

√
5Fm+2

n(n+ α2)(n+ β2)
= γ

√
5Fm +

√
5Fm+1

∞∑
n=1

1

n2 + 3n+ 1
−

−2
√
5Fm

∞∑
n=1

1

n2 + 3n+ 1
−

√
5Fm

∞∑
n=1

1

n(n2 + 3n+ 1)
.

Hence,

∞∑
k=1

(ζ(2k + 1)− 1)F2k+m = Fm +
Lm

2
− Fm+1

2

∞∑
n=1

1

n2 + n− 1
+
Fm

2

∞∑
n=1

1

n(n2 + n− 1)
+

+
(Fm+1

2
− Fm

) ∞∑
n=1

1

n2 + 3n+ 1
− Fm

2

∞∑
n=1

1

n(n2 + 3n+ 1)
. (8)

To simplify further, we note that (see [9])

∞∑
n=1

1

n2 + n− 1
= 1 +

√
5π

5
tan

√
5π

2
,

∞∑
n=1

1

n(n2 + n− 1)
= 1− γ − ψ(α) +

5 +
√
5

10
π tan

√
5π

2
,

∞∑
n=1

1

n2 + 3n+ 1
=

√
5π

5
tan

√
5π

2
,

∞∑
n=1

1

n(n2 + 3n+ 1)
= 1 + ψ(α) + γ − 5 + 3

√
5

10
π tan

√
5π

2
.

Using these series, from (8) we finally conclude that

∞∑
k=1

(ζ(2k + 1)− 1)F2k+m =
2Fm − Fm+1 + Lm

2
+
πFm

2
tan

√
5π

2
− Fm(ψ(α) + γ).

Taking into account Lm = Fm−1+Fm+1, we have (6). The statement (7) can be proved either
analogously or using the relations from Remark 1.

When m = 0, then from (6) we get the expressions

∞∑
k=1

(ζ(2k + 1)− 1)F2k =
1

2
,

∞∑
k=1

(ζ(2k + 1)− 1)L2k =
3

2
+ π tan

√
5π

2
− 2ψ(α)− 2γ.

In view of (1) we arrive at the beautiful result

∞∑
k=1

ζ(2k + 1)
F2k

5k
=

∞∑
k=1

(ζ(2k + 1)− 1)F2k =
1

2
.

The next result generalizes an identity from [7].
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Theorem 3. For m ≥ 0, we have

∞∑
k=2

(ζ(k)− 1)Fk+m−1 = Fm+2 +
(√5

5
Fm−1 +

5 +
√
5

10
Fm

)
π tan

√
5π

2
− Fm(ψ(α) + γ)

∞∑
k=2

(ζ(k)− 1)Lk+m−1 = Lm+2 +
(√5

5
Lm−1 +

5 +
√
5

10
Lm

)
π tan

√
5π

2
− Lm(ψ(α) + γ).

Proof. Here, we work with the generating function

∞∑
k=2

(ζ(k)− 1)zk−1 = 1− γ − ψ(2− z), |z| < 2,

which also comes from [10, p. 280]. This gives

∞∑
k=2

(ζ(k)− 1)Fk+m−1 = (1− γ)Fm +
1√
5

(
βmψ(α+ 1)− αmψ(β + 1)

)
.

The remainder of the proof is as above and we leave it as an exercise.

When m = 0, we use the Fibonacci relation F−n = (−1)n+1Fn to see that

∞∑
k=2

(ζ(k)− 1)Fk−1 = 1 +
π√
5
tan

√
5π

2
,

which appears in [7].

3. Further related series. In this section we study some series that are closely related to
the series form the last section.

Theorem 4. Let m ≥ 0. Then we have
∞∑
k=1

(ζ(2k)− 1)
F2k+m−1

k
= Fm−1 ln(π csc πα) +

2Lm−1 lnα√
5

,

∞∑
k=1

(ζ(2k)− 1)
L2k+m−1

k
= Lm−1 ln(π csc πα) + 2

√
5Fm−1 lnα.

Proof. We work with the following generating function from [10, p. 281]

∞∑
k=1

(ζ(2k)− 1)
z2k

k
= ln

(
πz(1− z2) csc πz

)
, |z| < 2.

This relation yields straightforwardly for m ≥ 0

∞∑
k=1

(ζ(2k)− 1)
F2k+m−1

k
=
αm−1 ln(πα2 sec πα)− βm−1 ln(πβ2 sec πβ)√

5
.

The first expression is obtained by simplification using sinπα = sinπβ = cos
√
5π
2

. The proof
of the second expression is similar.
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When m = 0 and m = 1, then with the use of L−n = (−1)nLn

∞∑
k=1

(ζ(2k)− 1)
F2k−1

k
= ln(π csc πα)− 2 lnα√

5
,

∞∑
k=1

(ζ(2k)− 1)
L2k−1

k
= − ln(π csc πα) + 2

√
5 lnα,

∞∑
k=1

(ζ(2k)− 1)
F2k

k
=

4 lnα√
5
,

∞∑
k=1

(ζ(2k)− 1)
L2k

k
= 2 ln(π sec πα).

Theorem 5. Let m ≥ 0. Then we have
∞∑
k=1

(ζ(2k + 1)− 1)
F2k+m

2k + 1
= (1− γ)Fm +

Lm−1

2
√
5

(
ln(π csc πα)− 2 ln Γ(α)− 4 lnα

)
,

∞∑
k=1

(ζ(2k + 1)− 1)
L2k+m

2k + 1
= (1− γ)Lm +

√
5Fm−1

2

(
ln(π csc πα)− 2 ln Γ(α)− 4 lnα

)
,

where γ is the Euler-Mascheroni constant.

Proof. The following generating function is stated in [10, p. 280]
∞∑
k=1

(ζ(2k + 1)− 1)
z2k+1

2k + 1
= (1− γ)z +

1

2
ln

Γ(2− z)

Γ(2 + z)
, |z| < 2.

This relation yields straightforwardly for m ≥ 0
∞∑
k=1

(ζ(2k + 1)− 1)
F2k+m

2k + 1
= (1− γ)Fm +

1

2
√
5

(
αm−1 ln

Γ(β + 1)

Γ(α2 + 1)
− βm−1 ln

Γ(α+ 1)

Γ(β2 + 1)

)
.

The fundamental functional equation of the gamma function, Γ(z + 1) = zΓ(z), yields
∞∑
k=1

(ζ(2k + 1)− 1)
F2k+m

2k + 1
= (1− γ)Fm +

1

2
√
5

(
αm−1 ln

βΓ(β)

α3Γ(α)
− βm−1 ln

αΓ(α)

β3Γ(β)

)
.

Since βΓ(β)
α3Γ(α)

=
(

αΓ(α)
β3Γ(β)

)−1

, we can write the last equation as follows

∞∑
k=1

(ζ(2k + 1)− 1)
F2k+m

2k + 1
= (1− γ)Fm +

Lm−1

2
√
5
ln
( −Γ(β)

α4Γ(α)

)
.

Finally, note that Γ(β)
Γ(α)

= π
Γ2(α) sinπα

, where we have used Γ(z)Γ(1 − z) = π
sinπz

. This
completes the first proof. The other one is omitted.

The special evaluations for m = 0 and m = 1 are
∞∑
k=1

(ζ(2k + 1)− 1)
F2k

2k + 1
=

1

2
√
5

(
− ln(π csc πα) + 2 ln Γ(α) + 4 lnα

)
,

∞∑
k=1

(ζ(2k + 1)− 1)
L2k

2k + 1
= 2(1− γ) +

√
5

2

(
ln(csc πα)− 2 ln Γ(α)− 4 lnα

)
,

∞∑
k=1

(ζ(2k + 1)− 1)
F2k+1

2k + 1
= 1− γ +

1√
5

(
ln(csc πα)− 2 ln Γ(α)− 4 lnα

)
,
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and the interesting identity
∞∑
k=1

(ζ(2k + 1)− 1)
L2k+1

2k + 1
= 1− γ.

Theorem 6. For m ≥ 0, we have
∞∑
k=2

(ζ(k)− 1)
Fk+m−1

k
= (1− γ)Fm − ln Γ(α)√

5
Lm−1 + Fm−1 lnα+

αm−1

√
5

ln
( π
α2

csc πα
)

and
∞∑
k=2

(ζ(k)− 1)
Lk+m−1

k
= (1− γ)Lm −

√
5 ln Γ(α)Fm−1 + Lm−1 lnα+ αm−1 ln

( π
α2

csc πα
)
.

Proof. We can prove the statements using [10, p. 280]
∞∑
k=2

(ζ(k)− 1)
zk

k
= (1− γ)z + lnΓ(2− z), |z| < 2.

In case of Fibonacci numbers, we can derive
∞∑
k=2

(ζ(k)− 1)
Fk+m

k
= (1− γ)Fk+m +

1√
5

(
αm ln(βΓ(β))− βm ln(αΓ(α))

)
,

from which the statement is obtained by simplification. The Lucas series is obtained analo-
gously.

When m = 1, then the special cases are
∞∑
k=2

(ζ(k)− 1)
Fk

k
= 1− γ − 2√

5

(
Γ(α) + lnα

)
+

1√
5
ln(π csc πα),

∞∑
k=2

(ζ(k)− 1)
Lk

k
= 1− γ + ln(π csc πα).

4. Concluding remarks. In this paper we presented new closed forms for some types
of infinite series involving Fibonacci and Lucas numbers with the Riemann zeta function
of integer arguments. To prove our results, we applied some routine arguments, combining
Binet’s formulas with generating functions and some known series evaluations. Using similar
techniques, we can establish series evaluations involving the Riemann zeta function of integer
arguments with Fibonacci and Lucas polynomials and other known number and polynomial
sequences. For example, the following identities hold:

∞∑
k=1

(ζ(2k)− 1)U2k−2(x) =
2− x2

2(x2 − 1)
+

π

2(ω − σ)
· sin(ω − σ)π

sinωπ · sinσπ
,

∞∑
k=1

(ζ(2k)− 1)T2k−1(x) =
x

2
− π

4
· sin(ω + σ)π

sinωπ · sin σπ
,

where Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind, respectively,
ω = x+

√
x2 − 1, σ = x−

√
x2 − 1 with |x| ∈

(
1; 5

4

)
.
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