PACS: 61.05.cj, 61.50.ah, 71.15.mb, 78.40.fy

ISSN 1729-4428

I.В. Семків

Структурні та оптичні властивості b¢-фази Ag₈SnSe₆

Національний університет "Львівська політехніка", кафедра фізики, вул. С. Бандери, 12, Львів, 79013, Україна, e-mail: <u>Semkiv.Igor.5@gmail.com</u>

Проведено енергодисперсійний аналіз елементного складу b^{c} фази аргіродиту Ag₈SnSe₆. На отриманому спектрі проявляються тільки піки елементів, що відносяться до Ag₈SnSe₆. Отримано добре узгодження виміряних та теоретично розрахованих спектрів оптичного поглинання Ag₈SnSe₆. Визначено ширину забороненої зони аргіродиту. Проведено моделювання кристалічної структури $b^{c}Ag_8SnSe_6$ та розрахунок міжатомних відстаней.

Ключові слова: аргіродит, халькогеніди, енергодисперсійний аналіз, оптичне поглинання, кристалічна структура.

Стаття поступила до редакції 12.03.2016; прийнята до друку 30.08.2016.

Вступ

Через обмеженість енергетичних ресурсів Землі особлива увага науковців останнім часом звернена на матеріали 3 високими фотовольтаїчними параметрами та, зокрема, здатними до резистивного перемикання. До таких матеріалів можна віднести багатокомпонентні халькогеніди: Cu-In-Ga-Se [1], [5] Cu-Zn-Sn-S [2-4], Ag-Zn-Sn-S лля фотоперетворювачів та халькогеніди зі змінною фазою [6] для комірок резистивного перемикання. Щодо останніх в переліку матеріалів, то тут особливе місце займають аргіродити - потрійні халькогеніди групи А^IВ^{IV}С^{VI}

Сполука Ag_8SnSe_6 , що є прямозонним напівпровідником [7] з високим оптичним коефіцієнтом поглинання, цікавий своєю змішаною (іонно-електронною) провідністю, в якій іонна компонента здійснюється через катіони срібла Ag^+ , та низькотемпературним фазовим переходом [8].

Аргіродит Ag₈SnSe₆ кристалізується V орторомбічній сингонії з просторовою групою симетрії *Pmn2*₁. Першо принципні розрахунки зонноенергетичної структури показали, що зона провідності в основному сформована d станами Ag, а зона провідності переважно р станами Ад з внеском р станів Sn і Se [7]. Згідно теоретико-групового аналізу Ag₈SnSe₆ характеризується 90 коливними модами, три з яких є акустичними, а усі інші оптичними [9].

Метою даної роботи є експериментальні дослідження та теоретичні розрахунки структурних та оптичних параметрів аргіродиту Ag₈SnSe₆ для

його подальшого використання в пристроях електроніки та іоніки твердого тіла.

I. Методика досліджень

Аргіродит Ag_8SnSe_6 отримували шляхом прямого сплавлення елементарних срібла, олова та селену високої чистоти. Наважку матеріалів проводили у відповідних стехіометричних співвідношеннях, відповідно сполуці Ag_8SnSe_6 . Синтез вакуумованої ампули проводився в однозонній печі з нагріванням до 1050 К. Нагрівання супроводжувалось трьома температурними витримками (500, 550, 720 К) для плавлення селену, синтезу подвійних сполук Ag_2Se , SnSe₂ та синтезу потрійної сполуки Ag_8SnSe_6 відповідно [7].

Елементний склад отриманої сполуки Ag₈SnSe₆ було проведено методом енерго-дисперсійного аналізу на енергодисперсійному рентгенофлуоресцентному аналізаторі "EXPERT 3L". Вимірювання проводились при кімнатній температурі з часом експозиції 300 с. Зразок під час дослідження знаходився в атмосфері гелію.

Оптичні спектри поглинання $\alpha(\lambda)$ сполуки аргіродиту в діапазоні довжин хвиль 900 – 1800 нм отримано за допомогою спектрофотометра Shimandzu UV3600.

Теоретичні розрахунки оптичного поглинання та структури аргіродиту Ag₈SnSe₆ проводили за допомогою теорії функціонала щільності.

Для опису псевдохвильових функцій було

Структурні та оптичні властивості β'-фази Ag₈SnSe₆

Fig. 1. Energy Dispersive X-ray Spectrum of synthesized Ag₈SnSe₆

Fig. 2. Crystal structure of $Ag_8SnSe_6 bc$ phase in YZ plane.

використано базис плоских хвиль. При цьому максимальна кінетична енергія врахованих плоских хвиль становили 300 еВ [7].

Повну електронну енергію кристала визначали самоузгоджено в наближенні функціонала електронної щільності. Електронна енергія і щільність визначалась із рівняння Кона–Шема.

Для іонних потенціалів використовували ультрам'які псевдопотенціали Вандербільта [11]. Для врахування обмінно-кореляційних ефектів використовували наближення GGA (PBE) [12, 13]. Розподіл зарядової густини розраховано методом спеціальних точок [14] демпфування заряду.

Використовуючи отримані теоретичні параметри гратки та приведені результати зонної структури кристалу β' - фази Ag₈SnSe₆ у роботі [7], приведено результати експериментальних та теоретичних розрахунків краю власного поглинання, та проаналізовано природу його походження.

II. Результати досліджень

Результати дослідження елементного складу плівок за допомогою енергодисперсійного аналізу представлені на рис. 1.

Енергодисперсійний аналіз показує наявність у сполуці тільки срібла, олова та селену з масовим вмістом елементів, що відповідає стехіометричному складу Ag₈SnSe₆.

Відомо, що β' -Ag₈SnSe₆ належить до просторової групи *Pnm2*₁. Результати моделювання кристалічної структури даного аргіродиту подана на рис. 2. Структура представлена в площині *YZ*.

Встановлено два характерні типи зв'язку для атомів Se які формують структуру кристалу:

1. Перший тип встановлює зв'язок атомів Se з атомами Ag.

 Інший тип з'єднання – це зв'язок атомів Se з Sn, при якому атоми Ag знаходяться дещо віддалено.

Приведені на рис. 2 теоретично розраховані міжатомні відстані добре узгоджуються із експериментальними результатами роботи [15].

Для визначення ширини забороненої зони побудувано спектральну залежність поглинання в координатах $(\alpha \cdot hv)^{2/n}$ від hv та екстрапольовано лінійну частину графіка прямою до перетину з віссю енергій. Оскільки Ag₈SnSe₆ належить до прямозонних напівпровідників, тому для нього n = 1.

На спектральній залежності поглинання плівок Ag_8SnSe_6 спостерігається наявність краю фундаментального поглинання (рис. 3.). Екстраполяцією лінійних ділянок кривої до перетину з віссю енергій встановлено оптичну ширину забороненої зони аргіродиту, що становить 0,82 еВ. Лінійний характер залежності (α -hv)² від hv в інтервалі 1,1–1,4 еВ вказує на формування краю поглинання прямими міжзонними переходами, що підтверджує літературні дані [7, 10].

Основний тип переходів, які характеризують

Fig. 3. Experimental absorption spectral dependence $(\alpha \cdot hv)^2$ vs. hv.

Fig. 4. Theoretically calculated fundamental absorption edge of $Ag_8SnSe_6 bc$ phase using operator "scissor" (0.37 eV).

заборонену щілину, є $p \rightarrow s$ переходи. Узгодженість експериментальних даних (рис. 3) та теоретичних (рис. 4) розрахунків дає підстави вважати, що вибрана модель коректно описує оптичні та структурні параметри приведеного кристалу.

Висновки

Проведено дослідження елементного складу низькотемпературної *b¢* фази аргіродиту Ag₈SnSe₆. На енергодисперсійному спектрі проявляються піки тільки Ag, Sn та Se, що підтверджує чистий синтез аргіродиту. Проведено експериментальні вимірювання та теоретичні розрахунки спектрів оптичного поглинання кристалу Ag_8SnSe_6 , які показали добру узгодженість. З положення краю оптичного поглинання було визначено ширину забороненої зони аргіродиту, що становить 0,82 еВ та 0,81 еВ для експериментальних та теоретичних результатів відповідно. Проведено моделювання кристалічної структури *b¢* фази Ag_8SnSe_6 у площині *YZ* та розрахунок міжатомних відстаней, що добре узгоджуються з експериментальними результатами.

Семків І.В.- аспірант кафедри фізики

- [1] T. Sidali, A .Duchatelet, E. Chassaing, D. Lincot, Thin Solid Films 582, 69 (2015).
- [2] Ahmet Tombak, Yusuf Selim Ocak, Mustafa Fatih Genisel, Mater. Sci. Semicond. Process. 28, 98 (2014).
- [3] W.C. Yang, C.K. Miskin, C.J. Hages, E.C. Hanley, C. Handwerker, E.A. Stach, R. Agrawal, Chem. Mater. 26, 3530 (2014).
- [4] J. Xu, X. Yang, Q.D. Yang, T.L. Wong, C.S. Lee, J. Phys. Chem. C116 19718 (2012).
- [5] T. Saamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, T. Torimoto, Chem. Lett. 41, 1009 (2012).

- [6] M. N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005).
- [7] I.V. Semkiv, B.A. Lukiyanets', H.A. Il'chuk, R.Yu. Petrus', A.I. Kashuba, M.V. Chekaylo, Zhurnal nano- ta elektronnoyi fizyky 8(1), 01011 (2016).
- [8] O. Gorochov, Bul. Soc. Chim. Fr. 6, 2263 (1968).
- [9] I.V. Semkiv, A.I. Kashuba, H.A. Il'chuk, M.V. Chekaylo, Fizyka i khimiya tverdoho tila 16(2), 257 (2015).
- [10] R.A. Bendorjus, A.S. Kinduris, E.V. Cvetkova, A.Ju. Shilejka, Neorganicheskie materialy, 12(10), 1745 (1976).
- [11] D. Vanderbilt. Phys. Rev. B. 11, 7892 (1990).
- [12] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. B 59, 7413 (1999).
- [13] A.I. Kashuba, S.V. Apunevych, Zhurnal nano- ta elektronnoyi fizyky 8(1), 01010 (2016).
- [14] D.J. Chadi, M.L. Cohen. Phys. Rev. B 8(5), 5747 (1973).
- [15] L.D. Gulay, I.D. Oleksceyk and O.V. Parrasyuk, Journal of Alloys and Compounds, 339(1-2), 113 (2002).

I.V. Semkiv

Structure and Optical Properties of b¢-Phase of Ag₈SnSe₆

Lviv Polytechnic National University, physics department, 12 S. Bandera Str., Lviv, 79013, e-mail: <u>Semkiv.Igor.5@gmail.com</u>

Energy dispersive x-ray spectroscopy of lowtemperature $b \notin Ag_8SnSe_6$ crystalcarried out. Energy dispersive spectrum shows only peaks related to Ag_8SnSe_6 . Experimental optical absorption spectrum and band gap value 0.82 eV are determined. Theoretical calculation of absorption spectrum shows good agreement with experimental studies. Modeling of crystal structure of Ag_8SnSe_6 argyrodite and interatomic distances calculation are carried out.

Keywords: argyrodite, chalcogenides, energy dispersive analysis, optical absorption spectra, crystal structure.