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I ntr oduction

An important problem of modern physics, which is
of great interest from both experimentalists and theorists
is to study phenomena in systems with ion and proton
conductivity. Attention to these systems is paid due to
ever-increasing possibilities of practica applications - as
a solid eectrolyte in capacitors and batteries, in
membranes of fuel cells, in eectronics, control and
signalling [1] devices for special purposes. Therefore
new compounds with high ionic conductivity were
synthesized recently in order to find materials stable
againgt chemical and mechanical action and with other
specific properties. As an example, we can cite a series
of lithium conductive materids synthesized from
perovskit structures [2,3,4]. Just recently a new
superionic  crystal Li;0GeP,S;;  which  conductivity
reaches 12 mom'cm™ at room temperature and 0.41

mom’cm® even a -30°C is synthesized [5] The
conductivity of ionic conductors is particularly high
when a number of ions is much less than a number of
positions in a lattice, i.e. when there are vacancies.
Therefore a lot of free positions facilitates ion hopping
probability from one position to another.

A specia class of ionic conductors is represented by
crystals, where charge carriers are hydrogen ions
(protons). At low temperatures, they are ferrodectric or
ferrodlagtic crystals, but at higher temperatures they
undergo trandition to superprotonic phase, while the
conductivity is increased by several orders of magnitude
(among others there are compounds of the general form
MeHXO,;, where M=CsRb, NHg; X=S Se.
Numerous structural studies have shown that in low-
temperature phase the ions (protons) are clearly in the
fixed positions, while in high-temperature phase they are
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distributed with equal probability between multiple
positions in the unit cell. Lattice model are widely used
for atheoretical description of ion and proton transport at
the microscopic level. They are either based on Fermi
statistics [6-10] or on "mixed" Pauli statistics [11-14],
which particles are of Bose nature, but they also obey the
Fermi rule. Charge transfer process in some superionics
occurs along the chain (one-dimensional) structures.
Examples are the proton conductor LiN,HsSO, [15],
some superionic (superprotonic) conductors, in particular
CsHSO, [16], coordination polymers like iron oxalate
dihydrate Fe(C,0y) « 2H,0, nanotubes [17], etc.

In this paper, we investigate the equilibrium states of
one-dimensional ionic Pauli conductor based on the
lattice model, which takes into account the ion hopping,
internal modulating field and short-range interactions
between ions. Particular attention is paid to the latter,
because according to the experimental data [18] and
guantum- chemica calculations [19, 20] the short-range
interactions are important in rea systems and largely
determines their behavior. Moreover, in the case of Pauli
conductor the short-range interaction is responsible for
the transition to the charge density wave (CDW)-state
[21]. We investigate the trangtion from (CDW)-phase to
the superfluid (SF)-like phase, which can be considered
as analogue of superionic phase and to the Mott insulator
(M1)-type phase. The calculations are performed using
the exact diagonaization technique. Analyzing the ion
single-particle spectral densties and their reconstruction
at the change of concentration of
ions, we get the state diagram of one-dimensiona  ionic
conductor.
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|. Single-particle spectral densities and
regions of existence of the various
phases

In previous work [22] the expressions for the spectral
densities in different phases were obtained within the
random phase approximation in the framework of the
two-sublattice hard-core boson modd. Their calculations
were performed and the shape of spectral densities in
different phases was determined. In this paper the
spectral density is calculated by exact diagonalization
technique for one-dimensiona (d =1) chain structure.
Diagrams of states are constructed basing on analysis of
features of these spectra. We take into account the
conclusions of studies [12, 13, 22, 23]. In particular, in
determining the regions of existence of various phases,
we have used the fact that the important property of the
spectral density in superfluid (SF) phase is the presence
of negative branche (atw <0), which merges
continuously with the positive branches at the point
w =0 (see for example [22, 23]) where the chemical
potential m is placed. It is consequence of fact, that in
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SF- phase (the phase with the Bose condensate) the
chemical potentiad goes into the Bose excited band. In
contrast, in CDW-phase there is a gap beetwen negative
and positive branches. Thus we have the splitting of the
spectrum into two subbands and therefore modulated
state with doubled lattice period. CDW-phaseat T =0,
characterised by the haf-filling, exists. The level of the
chemical potential m islocated in the middle of the gap
between the two bands. In Mott insulator state (MI) the
commutator spectral density has branches with only one
sign. The chemica potential is placed above (or below)
the two bands [22]. Described above features can be seen
in the Figure 1 where single-particle spectral density are
obtained for different phases.

II. Model and method (exact
diagonalization approach)

We consider of the one-dimensional ion conductor as
the chain of heavy immobile ionic groups and light ions
that move along this chain occupying certain positions.
The subsystem of light ions is described with the
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Fig. 1. Boson single-particle spectral density for different phases of two-subl attice hard-core boson model of ionic
conductor [22].
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following Hamiltonian

H =t&(
i

This model takes into account the nearest-neighbour
ion transfer (with hopping parametert), interaction
between ions that occupy nearest-neighbouring positions
(with corresponding parameter V ) and modulating field
(parameter A). The system is divided into two
sublattices under influence of the A field, which
simulates the long-range interactions between the
particles, which contributes to the modulation of the
spatial distribution of light ions in the so-called ordered
phase (the existence of such phases a low temperatures
is characterigtic features of superionic conductors). In our
case ¢ () are Pauli operators. They describe the process
of annihilation (creation) of ion in position | therefore
n = Ci+Ci is the occupation number of protons in this
position. In this case the moddl (1) is equivalent to the
extended hard-core boson mode, i.e. the boson Hubbard
model  with repulsive interaction between nearest
neighbours and infinite on-siterepulsion U ® ¥ [24].

For the chain of N sites we introduce the many-
particle states

| M. Ny K NN i (2
The Hamiltonian matrix on the basis of these states

is the matrix of the order 2" 2. This matrix is
diagonalized numerically

- bl
whereZ = %e °Ip. Spectral densities in (7), obtained
from commutator h =1 (5) and anticommutator h = -1
(6) Green's functions respectively, exhibit discrete
structure. They consist of some number d -peaks due to
the finite size of a cluster (in our calculations the value
N =10 was taken). Therefore we apply the periodic
boundary conditions to the cluster and introduce small
parameter D to broaden the d -peaks according to

1 D
Lorentz distribution d(W) ® ————

P w +D2

[11.10on spectral densitiesand diagram of
states

We calculated the spectral density (7) in a wide
range of values of the short-range interaction between the
ions for different values of temperature and chemical

+ + . . . i
G g +GaG) TVaAN M, - man +Aa(-1) .

D

U tHU = =al %P, 3)
p
I !
where A, are eigenvalues of the Hamiltonian, )@ P ae
Hubbard operators. The same transformation is applied
to the creation and annihilation operators

'1 _ 8 | I]pq '1+ - i*an
U ciu-qupq% .U ciu_?sAfsx (4)

We construct

functionG,; ; :<<ci |Ci+>>’ that contains information

single-particle Green's

about single-particle energy spectrum of the system. For
Pauli creation and annihilation operators this Green's
function can be constructed in two ways, i.e. commutator
Green's function

((a01570a) =-iae- vag 0. o ®

and anticommutator Green's function

(g |q+(t@>>(a) =-iQ(t- 194¢ (1), (19} (6)

Imaginary part of these Green's functions are the
single-particle spectral densities

7z - I - I N
N S j j*ebp-hebqliI
4 Ime= & ApqAng —u (7)
=1 ézpq w-(Ig-1p)+ied
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potential. Experimental studies of some specific crystals
[18, 25], and quantum-chemical calculations [19] make it
possible to estimate the value of the correlation congtant
V = 3000 ...10000cm™, and the value of the transfer
parameter t = 40 ... 2500cm™. This shows that in real
systems there is a strong correlation between ions, which
has a significant impact on the structure and energy
spectrum of the system. In our work we have chosen:
V/t=0,1..6. In the following, we relate all energy
parameter, including KT , tothe hopping
parameter t , which istaken as the energy unit.

Analyzing the shape and topology of the calculated
frequency- dependent spectral densities at different
values of parameters of the moded we built the
corresponding state diagram.  When  constructing
diagrams we have based on the discussed above features
of the spectral density in a one or another phase (see the
first chapter).

When the modulating field A is present, the
neighboring positions become nonequivalent and lattice
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is divided into two sublattices with the different ion
occupancy. Modulating field extends CDW- phase
region, whereas the SF phase region decreases. Here we
present the phase diagramsat T = 0. Figure 2 shows the
phase diagrams depending on the value of short-range
interactions between ions V and vaues of modulating
field A. Itisshown that in the case of the (U',V) diagram
the line of coexistance of SF and MI phases is straight
(the value of the chemical potential at which the phase
transition take place is proportional to V). Unlike the
previous case, in the (W,A) diagram the line that
Separates the CDW and SF phase is  dtraight.
For convenience we use the notation m'=m- V.

The gap in the spectrum of CDW phase increases
with the growth of both parameters V and A. Expansion
of the gap in the spectrum with increasing V was
obtained in previous studies, but this was done in the
case of Fermi datidics, ie, for the spinless-fermion
model [10, 26]. As a whole, the width of the region of
CDW phase increases with increasing magnitude of the
short-range interaction V as well as the value of the
modulating field A. When V =0 its width is directly
proportional to the strenght of modulating field A (the
lines separating the CDW and SF phases are of the form:
m'=+A and m'=- A). In this regard, the diagram in
Figure 2 for V =0 coincides with the exact diagram
obtained analytically for the one-dimensiona case (see
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[27]), where only the case V =0 was considered. The
exact analytical solution in this case was possible (the
Jordan-Wigner transformation that transformes the hard-
core boson Hamiltonian into the non-interacting spinless-
fermion Hamiltonian for one-dimensional systems was
used [28]). Similar studies were performed in the [12].
Figure 3 shows the calculated commutator spectral
density for some values of m', which is related to

different phases a8 T =0. The level of chemica
potential is placed in the w = 0 point. The mean number
n for agiven m was calculated according to the spectral

theorem n ¥ % a(w)dw where r
= O y
-¥ Wi a

anticommutator spectral density (density of states).
Figure 3 (c) refers to the CDW phase, 3 (b) - to the
SF phase, when at w = 0 negative branch of commutator
spectral density merges into positive branch with no gaps
between them. Figure 3 (@) corresponds the MI phase.
Here chemical potentia is placed below the bottom of
the lower subband; commutator spectral density has only
positive branch. We haveshownthatat T =0 the CDW
phase is redized only in the case of half-

fiIIing(n =1/2), and exists only in the pointm'=0

when V=0 and A=0. When anybody of these
parameters is different from zero, the region of CDW
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Fig. 3. Commutator single-particle spectral density of one-dimensional ionic conductor for different statesat T =0,
V=4, A=1,t=1, D=0,25. Theleve of the chemical potential coincideswith the point w = 0.
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Fig. 4. Closing of the gap in the spectrum of one-dimensional ionic conductor with theincrease of temperature.
The case of haf-filling(n=1/2); m'=0,V =4, A=1,t =1. Theleve of the
chemical potential coincides with the point of w = 0.

phase becomes finite (in the m' coordinates); for
example, when V=4, A=0, we obtan:
-1,8<m'<18

At T 1 0, with increasing temperature CDW phase
is eroded. We observe the effect of thermal transfer of
the insulator- conductor type ( the analogue of the so-
called Mott transition ).

The possibility of such an effect for objects that are
studied in this work was shown in [29] and confirmed by
numerical calculations [26] for the case when the
particles are subjected to Fermi tatistics. The effect can
be illustrated by temperature changes of the single-
particle anticommutator spectral density (density of
states ) (see Figure 4), calculated based on the formula

(7). The gap in the spectrum(r a= 0) , Which occurs at

T =0 a haf filling is associated with the charge-
ordered state. This is due to the repulsive short-range
interactions between the particles, which forms such
type of the ground state of the system. At T1 0
gap gradually closes.

Conclusions

The structure of the energy spectrum of one
dimensional ionic conductor is determined by the
interaction between the ions, their concentration and

temperature. It is shown by the exact diagonalization
method that a T =0 the short-range repulsive
interaction between ions leads to the splitting of the
energy spectrum of one-dimensiona ionic conductor and
the appearance of the gap in the spectrum at the ionic
concentration n=1/2. At T®1 0 a gap disappears
gradually with increasng temperature. At T =0 the
CDW phase is present only in a haf filled state. The
width of the CDW phase region (as function of M)

increases with the increase of magnitude of the short-
range interaction V and the value of the modulating
field A ( the latter can be associated with an interna
field arising from the long-range interactions). The gap in
the spectrum of this phase aso increases with increasing
values of V and A. Analyzing the single-particle

spectral density r(w), calculated numericaly for the

one-dimensional case, we obtain the boundaries of CDW,
SF, MI phase regions at T =0 for different values of
short-range interaction parameter and modulating field.

Cmeuig P.A. - xkannunat $i3uko-MaTeMaTUIHUX HAyYK,
CTapIINi HAyKOBHW CIIBPOOITHUK BiJIIy KBaHTOBOI
CTATHUCTUKY,
Bopooiioe 0.A. - xaugugat ¢i3sUKO-MaTeMaTHIHUX
HayK, HAyKOBUH CIHIBPOOITHHK BTy KBaHTOBOI
CTAQTHUCTHUKH.
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P.A. Creuig, O. Bopo6iioB

da3o0Bi AiarpaMu iOHHOI0 NMPOBITHNKA

Incmumym ¢hizuku xonoencosanux cucmem HAH Yxpainu, eyn. Ceenyiyvkoeo 1,
79011 Jlvsis, Vrpaina, E-mail: stetdv@icmp.lviv.ua

JlocnimKkeHo piBHOBAaXKHI CTaHM OJHOBMMIPHOIO 10HHOrO NpPOBIJHMKA Ha OCHOBI IPaTKOBOI MOJENi B sKii
10HM TPAKTYIOTbCA K yacTHHKU [laymi. MeronoM To4HOI amiaroHaiizauii po3paxoBaHO YacTOTHY 3aJIEXKHICTH
OJIHOYACTHHKOBUX CIIEKTPAIBHUX I'yCTHH JUIs CKIHUCHHHMX 10HHUX JIAHIFOXKKiB. Ha OCHOBI aHami3y IIMX CHIEKTpiB
OTPHMAHO JliarpaMH CTaHIB Ta BCTAHOBJIEHO 00JIaCTi iCHYBaHHs pi3HUX (a3.
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